Câu hỏi:

29/01/2026 13 Lưu

Cho tam giác ABC vuông tại A có \({\rm{AB}} = 3\;{\rm{cm}},{\rm{AC}} = 4\;{\rm{cm}}\). Xác định tâm và bán kính của đường tròn ngoại tiếp tam giác ABC .

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi O là trung điểm của cạnh huyền BC của tam giác vuông ABC .

Ta có AO là trung tuyến của tam giác vuông \({\rm{OA}} = \frac{1}{2}{\rm{BC}} = {\rm{OB}} = {\rm{OC}}\).

Vậy đường tròn ngoại tiếp tam giác ABC là đường tròn tâm O là trung điểm của BC.

Cho tam giác ABC vuông tại A có \({\rm{AB}} = 3\;{\rm{cm}},{\rm{AC}} = 4\;{\rm{cm}}\). Xác định tâm và bán kính của đường tròn ngoại tiếp tam giác ABC . (ảnh 1)

Vì tam giác ABC vuông tại A (gt).

Theo định lí Pythagore, ta có: \({\rm{B}}{{\rm{C}}^2} = {\rm{A}}{{\rm{B}}^2} + {\rm{A}}{{\rm{C}}^2} = {3^2} + {4^2}\)\( \Rightarrow {\rm{BC }} = \sqrt {{3^2} + {4^2}} \)\( = \sqrt {25}  = 5(\;{\rm{cm}})\)

Vậy bán kính của đường tròn là \(5:2 = 2,5(\;{\rm{cm}})\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Từ tâm \[P\] và \[Q\] vẽ \[PQ\] và \[CQ\] vuông góc với cạnh \[AD\] của tam giác

Các tam giác \[APB\] và \[DQC\] là nửa tam giác đều với \[PB = QC = 3\]

\[ \Rightarrow AB = CD = 3\sqrt 3 ;BC = PQ = 6 \Rightarrow AD = 6 + 6\sqrt 3 \]

Vậy chu vi tam giác là: \[18 + 18\sqrt 3 \]

Lời giải

Ta có \(AI = \frac{{2AO}}{3} = \frac{{2R}}{3} \Rightarrow OI = R - \frac{{2R}}{3} = \frac{R}{3}\)

\(\Delta OCI\) vuông tại \(O\), ta có:

\(CI = \sqrt {O{C^2} + O{I^2}}  = \sqrt {{R^2} + {{\left( {\frac{R}{3}} \right)}^2}}  = \frac{{R\sqrt {10} }}{3}\)

\(\Delta CED\) nội tiếp đường tròn \(O\) có cạnh \(CD\) là đường kính \( \Rightarrow \Delta CED\) vuông tại \(E\)

Hai tam giác vuông \(OCI\) và \(CED\) có \(\widehat C:chung\)

\( \Rightarrow \Delta COI \sim \Delta CED \Rightarrow \frac{{CO}}{{CE}} = \frac{{CI}}{{CD}} \Rightarrow CE = \frac{{CO.CD}}{{CI}}\)

\( = \frac{{R.2R}}{{R\frac{{\sqrt {10} }}{3}}} = \frac{{6R}}{{\sqrt {10} }} = \frac{{3R\sqrt {10} }}{5}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP