Cho tam giác đều ABC ngoại tiếp đường tròn (I). Tính độ dài các cạnh của tam giác ABC biết rằng bán kính của (I) bằng 1 cm .
Cho tam giác đều ABC ngoại tiếp đường tròn (I). Tính độ dài các cạnh của tam giác ABC biết rằng bán kính của (I) bằng 1 cm .
Quảng cáo
Trả lời:

I là tâm của đường tròn nội tiếp tam giác đều ABC nên I là giao điểm của ba đường phân giác và I đồng thời là trọng tâm của tam giác đều ABC , khi đó AH là đường trung tuyến, ta có:
\({\rm{AI}} = 2{\rm{IH}} = 2.1 = 2(\;{\rm{cm}})\)\( \Rightarrow {\rm{BI}} = {\rm{CI}} = {\rm{AI}} = 2(\;{\rm{cm}})\)
Xét tam giác BHI vuông tại H , có cạnh huyền \({\rm{BI}} = 2(\;{\rm{cm}})\), góc
Theo định lí về hệ thức lượng trong tam giác vuông, ta có:
Độ dài các cạnh của tam giác đều ABC ngoại tiếp \(({\rm{I}},1)\) bằng \(2\sqrt 3 (\;{\rm{cm}})\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Từ tâm \[P\] và \[Q\] vẽ \[PQ\] và \[CQ\] vuông góc với cạnh \[AD\] của tam giác
Các tam giác \[APB\] và \[DQC\] là nửa tam giác đều với \[PB = QC = 3\]
\[ \Rightarrow AB = CD = 3\sqrt 3 ;BC = PQ = 6 \Rightarrow AD = 6 + 6\sqrt 3 \]
Vậy chu vi tam giác là: \[18 + 18\sqrt 3 \]
Lời giải
Ta có \(AI = \frac{{2AO}}{3} = \frac{{2R}}{3} \Rightarrow OI = R - \frac{{2R}}{3} = \frac{R}{3}\)
\(\Delta OCI\) vuông tại \(O\), ta có:
\(CI = \sqrt {O{C^2} + O{I^2}} = \sqrt {{R^2} + {{\left( {\frac{R}{3}} \right)}^2}} = \frac{{R\sqrt {10} }}{3}\)
\(\Delta CED\) nội tiếp đường tròn \(O\) có cạnh \(CD\) là đường kính \( \Rightarrow \Delta CED\) vuông tại \(E\)
Hai tam giác vuông \(OCI\) và \(CED\) có \(\widehat C:chung\)
\( \Rightarrow \Delta COI \sim \Delta CED \Rightarrow \frac{{CO}}{{CE}} = \frac{{CI}}{{CD}} \Rightarrow CE = \frac{{CO.CD}}{{CI}}\)
\( = \frac{{R.2R}}{{R\frac{{\sqrt {10} }}{3}}} = \frac{{6R}}{{\sqrt {10} }} = \frac{{3R\sqrt {10} }}{5}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

