Câu hỏi:

30/01/2026 12 Lưu

Nguyên hàm của hàm số \(f\left( x \right) = {{\rm{e}}^x} + x\) là

A. \({{\rm{e}}^x} + \frac{{{x^2}}}{2} + C\).         
B. \({{\rm{e}}^x} + {x^2} + C\).           
C. \(\frac{{{{\rm{e}}^x}}}{{\ln 2}} + {x^2} + C\).            
D. \({\rm{e}} + \frac{{{x^2}}}{2} + C\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Ta có \(\int {\left( {{{\rm{e}}^x} + x} \right)} \,{\rm{d}}x = {{\rm{e}}^x} + \frac{1}{2}{x^2} + C\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+) Ta có \(f\left( x \right) = \cos x.{\sin ^2}x = \cos x\left( {\frac{{1 - \cos 2x}}{2}} \right)\)\( = \frac{1}{2}\left( {\cos x - \cos x\cos 2x} \right)\)\( = \frac{1}{2}\cos x - \frac{1}{4}\left( {\cos 3x + \cos x} \right)\)\( = \frac{1}{4}\cos x - \frac{1}{4}\cos 3x\).

+) \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x}  = \int {\left( {\frac{1}{4}\cos x - \frac{1}{4}\cos 3x} \right){\rm{d}}x} \)\( = \frac{1}{4}\sin \,x - \frac{1}{{12}}\sin \,3x + C\).

Lại có: \[F\left( 0 \right) = 2025\] \[ \Rightarrow C = 2025\]\( \Rightarrow F\left( x \right) = \frac{1}{4}\sin \,x - \frac{1}{{12}}\sin \,3x + 2025\)\( \Rightarrow F\left( {\frac{\pi }{2}} \right) = \frac{1}{4}\sin \,\frac{\pi }{2} - \frac{1}{{12}}\sin \,\frac{{3\pi }}{2} + 2025\)\( = \frac{1}{4} + \frac{1}{{12}} + 2025 = \frac{{6076}}{3} \approx 2025\).

Vậy \[F\left( {\frac{\pi }{2}} \right) \approx 2025\].

Lời giải

+) Ta có \(f\left( x \right) = x{\left( {2x - 1} \right)^{2025}}\)\( = \frac{1}{2}\left( {2x - 1 + 1} \right){\left( {2x - 1} \right)^{2025}}\)\( = \frac{1}{2}{\left( {2x - 1} \right)^{2026}} + \frac{1}{2}{\left( {2x - 1} \right)^{2025}}\)..

+) \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x} \)\( = \int {\left( {\frac{1}{2}{{\left( {2x - 1} \right)}^{2026}} + \frac{1}{2}{{\left( {2x - 1} \right)}^{2025}}} \right){\rm{d}}x} \)\( = \frac{1}{4}\frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{2027}} + \frac{1}{4}\frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{2026}} + C\)\( = \frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{8104}} + C\).

Lại có: \[F\left( {\frac{1}{2}} \right) = 1\] \[ \Rightarrow C = 1\]\( \Rightarrow F\left( x \right) = \frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{8104}} + 1\)\( \Rightarrow F\left( 0 \right) = \frac{{{{\left( { - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( { - 1} \right)}^{2026}}}}{{8104}} + 1 \approx 1\).

Vậy \[F\left( 0 \right) \approx 1\].

Câu 4

A. \(I = \ln \left| {\frac{{{x^2} + x - 45}}{{{x^2} - x - 45}}} \right| + C\).                                       

B. \(I = \ln \left| {\frac{{{x^2} - x - 45}}{{{x^2} + x - 45}}} \right| + C\).

C. \(I = \frac{1}{2}\ln \left| {\frac{{{x^2} + x - 45}}{{{x^2} - x - 45}}} \right| + C\).            
D. \(I = \frac{1}{2}\ln \left| {\frac{{{x^2} - x - 45}}{{{x^2} + x - 45}}} \right| + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(I = \ln \left| {x - \frac{{2025}}{x}} \right| + C\).                                                                    

B. \(I = \ln \left| {1 - \frac{{2025}}{x}} \right| + C\).

C. \(I = \ln \left| {x + \frac{{2025}}{x}} \right| + C\).                      
D. \(I = \ln \left| {1 + \frac{{2025}}{x}} \right| + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\log {x^2} + C\].                                          

B. \(\frac{{\log _2^2x}}{2} + C\).

C. \(\log _2^2x + C\).             
D. \(\frac{{{{\log }_2}{x^2}}}{2} + C\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP