Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 45;45} \right\}\) thỏa mãn \(f'\left( x \right) = \frac{1}{{{x^2} - 2025}}\), \(f\left( {25} \right) = 0\). Tính \(f\left( { - 50} \right)\) thuộc khoảng nào?
Câu hỏi trong đề: Đề kiểm tra Nguyên hàm (có lời giải) !!
Quảng cáo
Trả lời:
Chọn A
Ta có \(f\left( x \right) = \int {f'\left( x \right){\rm{d}}x} \)\( = \int {\frac{1}{{{x^2} - 2025}}{\rm{d}}x} \)\( = \frac{1}{{90}}\int {\left( {\frac{1}{{x - 45}} - \frac{1}{{x + 45}}} \right){\rm{d}}x} \)\[ = \frac{1}{{90}}\ln \left| {\frac{{x - 45}}{{x + 45}}} \right| + C\]
Mà \[f\left( {25} \right) = 0\] \[ \Rightarrow \frac{1}{{90}}\ln \frac{2}{7} + C = 0 \Rightarrow C = - \frac{1}{{90}}\ln \frac{2}{7}\]
Khi đó \[f\left( x \right) = \frac{1}{{90}}\ln \left| {\frac{{x - 45}}{{x + 45}}} \right| - \frac{1}{{90}}\ln \frac{2}{7}\]
Do đó \[f\left( { - 50} \right) = \frac{1}{{90}}\ln 19 - \frac{1}{{90}}\ln \frac{2}{7} = \frac{1}{{90}}\ln \frac{{133}}{2} \approx 0,047 \in \left( {0;1} \right)\]Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
+) Ta có \(f\left( x \right) = \cos x.{\sin ^2}x = \cos x\left( {\frac{{1 - \cos 2x}}{2}} \right)\)\( = \frac{1}{2}\left( {\cos x - \cos x\cos 2x} \right)\)\( = \frac{1}{2}\cos x - \frac{1}{4}\left( {\cos 3x + \cos x} \right)\)\( = \frac{1}{4}\cos x - \frac{1}{4}\cos 3x\).
+) \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x} = \int {\left( {\frac{1}{4}\cos x - \frac{1}{4}\cos 3x} \right){\rm{d}}x} \)\( = \frac{1}{4}\sin \,x - \frac{1}{{12}}\sin \,3x + C\).
Lại có: \[F\left( 0 \right) = 2025\] \[ \Rightarrow C = 2025\]\( \Rightarrow F\left( x \right) = \frac{1}{4}\sin \,x - \frac{1}{{12}}\sin \,3x + 2025\)\( \Rightarrow F\left( {\frac{\pi }{2}} \right) = \frac{1}{4}\sin \,\frac{\pi }{2} - \frac{1}{{12}}\sin \,\frac{{3\pi }}{2} + 2025\)\( = \frac{1}{4} + \frac{1}{{12}} + 2025 = \frac{{6076}}{3} \approx 2025\).
Vậy \[F\left( {\frac{\pi }{2}} \right) \approx 2025\].Lời giải
+) Ta có \(f\left( x \right) = x{\left( {2x - 1} \right)^{2025}}\)\( = \frac{1}{2}\left( {2x - 1 + 1} \right){\left( {2x - 1} \right)^{2025}}\)\( = \frac{1}{2}{\left( {2x - 1} \right)^{2026}} + \frac{1}{2}{\left( {2x - 1} \right)^{2025}}\)..
+) \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x} \)\( = \int {\left( {\frac{1}{2}{{\left( {2x - 1} \right)}^{2026}} + \frac{1}{2}{{\left( {2x - 1} \right)}^{2025}}} \right){\rm{d}}x} \)\( = \frac{1}{4}\frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{2027}} + \frac{1}{4}\frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{2026}} + C\)\( = \frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{8104}} + C\).
Lại có: \[F\left( {\frac{1}{2}} \right) = 1\] \[ \Rightarrow C = 1\]\( \Rightarrow F\left( x \right) = \frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{8104}} + 1\)\( \Rightarrow F\left( 0 \right) = \frac{{{{\left( { - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( { - 1} \right)}^{2026}}}}{{8104}} + 1 \approx 1\).
Vậy \[F\left( 0 \right) \approx 1\].Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(I = \ln \left| {\frac{{{x^2} + x - 45}}{{{x^2} - x - 45}}} \right| + C\).
B. \(I = \ln \left| {\frac{{{x^2} - x - 45}}{{{x^2} + x - 45}}} \right| + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(I = \ln \left| {x - \frac{{2025}}{x}} \right| + C\).
B. \(I = \ln \left| {1 - \frac{{2025}}{x}} \right| + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\log {x^2} + C\].
B. \(\frac{{\log _2^2x}}{2} + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.