Câu hỏi:

30/01/2026 9 Lưu

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\backslash \left\{ { - 45;45} \right\}\) thỏa mãn \(f'\left( x \right) = \frac{1}{{{x^2} - 2025}}\), \(f\left( {25} \right) = 0\). Tính \(f\left( { - 50} \right)\) thuộc khoảng nào?

A. \(\left( {0;1} \right)\). 
B. \(\left( { - 1;0} \right)\).                              
C. \(\left( { - 2; - 1} \right)\).                                    
D. \(\left( {1;2} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có \(f\left( x \right) = \int {f'\left( x \right){\rm{d}}x} \)\( = \int {\frac{1}{{{x^2} - 2025}}{\rm{d}}x} \)\( = \frac{1}{{90}}\int {\left( {\frac{1}{{x - 45}} - \frac{1}{{x + 45}}} \right){\rm{d}}x} \)\[ = \frac{1}{{90}}\ln \left| {\frac{{x - 45}}{{x + 45}}} \right| + C\]

Mà \[f\left( {25} \right) = 0\] \[ \Rightarrow \frac{1}{{90}}\ln \frac{2}{7} + C = 0 \Rightarrow C =  - \frac{1}{{90}}\ln \frac{2}{7}\]

Khi đó \[f\left( x \right) = \frac{1}{{90}}\ln \left| {\frac{{x - 45}}{{x + 45}}} \right| - \frac{1}{{90}}\ln \frac{2}{7}\]

Do đó \[f\left( { - 50} \right) = \frac{1}{{90}}\ln 19 - \frac{1}{{90}}\ln \frac{2}{7} = \frac{1}{{90}}\ln \frac{{133}}{2} \approx 0,047 \in \left( {0;1} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+) Ta có \(f\left( x \right) = \cos x.{\sin ^2}x = \cos x\left( {\frac{{1 - \cos 2x}}{2}} \right)\)\( = \frac{1}{2}\left( {\cos x - \cos x\cos 2x} \right)\)\( = \frac{1}{2}\cos x - \frac{1}{4}\left( {\cos 3x + \cos x} \right)\)\( = \frac{1}{4}\cos x - \frac{1}{4}\cos 3x\).

+) \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x}  = \int {\left( {\frac{1}{4}\cos x - \frac{1}{4}\cos 3x} \right){\rm{d}}x} \)\( = \frac{1}{4}\sin \,x - \frac{1}{{12}}\sin \,3x + C\).

Lại có: \[F\left( 0 \right) = 2025\] \[ \Rightarrow C = 2025\]\( \Rightarrow F\left( x \right) = \frac{1}{4}\sin \,x - \frac{1}{{12}}\sin \,3x + 2025\)\( \Rightarrow F\left( {\frac{\pi }{2}} \right) = \frac{1}{4}\sin \,\frac{\pi }{2} - \frac{1}{{12}}\sin \,\frac{{3\pi }}{2} + 2025\)\( = \frac{1}{4} + \frac{1}{{12}} + 2025 = \frac{{6076}}{3} \approx 2025\).

Vậy \[F\left( {\frac{\pi }{2}} \right) \approx 2025\].

Lời giải

+) Ta có \(f\left( x \right) = x{\left( {2x - 1} \right)^{2025}}\)\( = \frac{1}{2}\left( {2x - 1 + 1} \right){\left( {2x - 1} \right)^{2025}}\)\( = \frac{1}{2}{\left( {2x - 1} \right)^{2026}} + \frac{1}{2}{\left( {2x - 1} \right)^{2025}}\)..

+) \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x} \)\( = \int {\left( {\frac{1}{2}{{\left( {2x - 1} \right)}^{2026}} + \frac{1}{2}{{\left( {2x - 1} \right)}^{2025}}} \right){\rm{d}}x} \)\( = \frac{1}{4}\frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{2027}} + \frac{1}{4}\frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{2026}} + C\)\( = \frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{8104}} + C\).

Lại có: \[F\left( {\frac{1}{2}} \right) = 1\] \[ \Rightarrow C = 1\]\( \Rightarrow F\left( x \right) = \frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{8104}} + 1\)\( \Rightarrow F\left( 0 \right) = \frac{{{{\left( { - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( { - 1} \right)}^{2026}}}}{{8104}} + 1 \approx 1\).

Vậy \[F\left( 0 \right) \approx 1\].

Câu 4

A. \(I = \ln \left| {\frac{{{x^2} + x - 45}}{{{x^2} - x - 45}}} \right| + C\).                                       

B. \(I = \ln \left| {\frac{{{x^2} - x - 45}}{{{x^2} + x - 45}}} \right| + C\).

C. \(I = \frac{1}{2}\ln \left| {\frac{{{x^2} + x - 45}}{{{x^2} - x - 45}}} \right| + C\).            
D. \(I = \frac{1}{2}\ln \left| {\frac{{{x^2} - x - 45}}{{{x^2} + x - 45}}} \right| + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(I = \ln \left| {x - \frac{{2025}}{x}} \right| + C\).                                                                    

B. \(I = \ln \left| {1 - \frac{{2025}}{x}} \right| + C\).

C. \(I = \ln \left| {x + \frac{{2025}}{x}} \right| + C\).                      
D. \(I = \ln \left| {1 + \frac{{2025}}{x}} \right| + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\log {x^2} + C\].                                          

B. \(\frac{{\log _2^2x}}{2} + C\).

C. \(\log _2^2x + C\).             
D. \(\frac{{{{\log }_2}{x^2}}}{2} + C\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP