Cho hàm số \(f(x) = {x^3} - 3x\).
Cho hàm số \(f(x) = {x^3} - 3x\).
a) Một nguyên hàm của \(f\left( x \right)\)trên \(\mathbb{R}\) là \(F(x) = \frac{{{x^4}}}{4} - \frac{{3{x^2}}}{2}\).
b) Một nguyên hàm của \(f\left( x \right)\)trên \(\mathbb{R}\) là \(G(x) = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} + 1\).
c) Biết một nguyên hàm của \(f\left( x \right)\)trên \(\mathbb{R}\) là \(M(x)\) và \(M(0) = 1\). Khi đó \(M\left( x \right) = \frac{{{x^4}}}{4} - \frac{{3{x^2}}}{2} + 1\).
Câu hỏi trong đề: Đề kiểm tra Nguyên hàm (có lời giải) !!
Quảng cáo
Trả lời:
a) Đúng.
Một nguyên hàm của \(f\left( x \right)\) trên \(\mathbb{R}\) là \(F(x) = \frac{{{x^4}}}{4} - \frac{{3{x^2}}}{2}\) vì \(F'\left( x \right) = {x^3} - 3x\).
b) Sai. \(G'\left( x \right) = {x^3} + 3x \ne f\left( x \right)\).
c) Đúng.
\(f\left( x \right) = {x^3} - 3x\) có nguyên hàm \(M(x) = \frac{{{x^4}}}{4} - \frac{{3{x^2}}}{2} + m\). Mà \(M(0) = 1 \Leftrightarrow m = 1\).
Khi đó \(M(x) = \frac{{{x^4}}}{4} - \frac{{3{x^2}}}{2} + 1\).
d) Đúng.
\(f(x) = {x^3} - 3x\) có nguyên hàm \(H(x) = \frac{{{x^4}}}{4} - \frac{{3{x^2}}}{2} + C\).
Mà \(H(1) = - \frac{1}{4} \Leftrightarrow \frac{1}{4} - \frac{3}{2} + C = - \frac{1}{4} \Leftrightarrow C = 1\).
Khi đó \(H(x) = \frac{{{x^4}}}{4} - \frac{{3{x^2}}}{2} + 1 \Rightarrow H(2) = - 1\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
+) Ta có \(f\left( x \right) = \cos x.{\sin ^2}x = \cos x\left( {\frac{{1 - \cos 2x}}{2}} \right)\)\( = \frac{1}{2}\left( {\cos x - \cos x\cos 2x} \right)\)\( = \frac{1}{2}\cos x - \frac{1}{4}\left( {\cos 3x + \cos x} \right)\)\( = \frac{1}{4}\cos x - \frac{1}{4}\cos 3x\).
+) \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x} = \int {\left( {\frac{1}{4}\cos x - \frac{1}{4}\cos 3x} \right){\rm{d}}x} \)\( = \frac{1}{4}\sin \,x - \frac{1}{{12}}\sin \,3x + C\).
Lại có: \[F\left( 0 \right) = 2025\] \[ \Rightarrow C = 2025\]\( \Rightarrow F\left( x \right) = \frac{1}{4}\sin \,x - \frac{1}{{12}}\sin \,3x + 2025\)\( \Rightarrow F\left( {\frac{\pi }{2}} \right) = \frac{1}{4}\sin \,\frac{\pi }{2} - \frac{1}{{12}}\sin \,\frac{{3\pi }}{2} + 2025\)\( = \frac{1}{4} + \frac{1}{{12}} + 2025 = \frac{{6076}}{3} \approx 2025\).
Vậy \[F\left( {\frac{\pi }{2}} \right) \approx 2025\].Lời giải
+) Ta có \(f\left( x \right) = x{\left( {2x - 1} \right)^{2025}}\)\( = \frac{1}{2}\left( {2x - 1 + 1} \right){\left( {2x - 1} \right)^{2025}}\)\( = \frac{1}{2}{\left( {2x - 1} \right)^{2026}} + \frac{1}{2}{\left( {2x - 1} \right)^{2025}}\)..
+) \(F\left( x \right) = \int {f\left( x \right){\rm{d}}x} \)\( = \int {\left( {\frac{1}{2}{{\left( {2x - 1} \right)}^{2026}} + \frac{1}{2}{{\left( {2x - 1} \right)}^{2025}}} \right){\rm{d}}x} \)\( = \frac{1}{4}\frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{2027}} + \frac{1}{4}\frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{2026}} + C\)\( = \frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{8104}} + C\).
Lại có: \[F\left( {\frac{1}{2}} \right) = 1\] \[ \Rightarrow C = 1\]\( \Rightarrow F\left( x \right) = \frac{{{{\left( {2x - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( {2x - 1} \right)}^{2026}}}}{{8104}} + 1\)\( \Rightarrow F\left( 0 \right) = \frac{{{{\left( { - 1} \right)}^{2027}}}}{{8108}} + \frac{{{{\left( { - 1} \right)}^{2026}}}}{{8104}} + 1 \approx 1\).
Vậy \[F\left( 0 \right) \approx 1\].Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(I = \ln \left| {\frac{{{x^2} + x - 45}}{{{x^2} - x - 45}}} \right| + C\).
B. \(I = \ln \left| {\frac{{{x^2} - x - 45}}{{{x^2} + x - 45}}} \right| + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \(I = \ln \left| {x - \frac{{2025}}{x}} \right| + C\).
B. \(I = \ln \left| {1 - \frac{{2025}}{x}} \right| + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[\log {x^2} + C\].
B. \(\frac{{\log _2^2x}}{2} + C\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.