Chất điểm chuyển động theo quy luật vận tốc \[v\left( t \right)\left( {m/s} \right)\] có dạng đường thẳng khi \[0 \le t \le 3\left( s \right)\] và \[8 \le t \le 15\left( s \right)\]và \[v\left( t \right)\] có dạng đường Parabol khi \[3 \le t \le 8\left( s \right)\](như hình vẽ)

a) Vận tốc của chất điểm tại thời điểm \(t = 3\) là \(v\left( 3 \right) = 11\,\left( {m/s} \right)\).
b) Quãng đường chất điểm di chuyển được trong \(3\) giây đầu tiên là: \({S_1} = \int\limits_0^3 {11dt} \,\,\left( m \right)\)
c) Quãng đường chất điểm đi được trong khoảng thời gian từ \(8\)giây đến \(15\) giây bằng \(73,5\left( m \right)\).
Câu hỏi trong đề: Đề kiểm tra Tích phân (có lời giải) !!
Quảng cáo
Trả lời:
a) Đúng (Dựa vào đồ thị \(v\left( t \right)\)).
b) Đúng
Trong \(3\) giây đầu tiên, vận tốc của chuyển động là \(v\left( t \right) = 11\,\left( {m/s} \right)\).
Do đó quãng đường chất điểm chuyển động trong \(3\)giây đầu tiên là: \({S_1} = \int\limits_0^3 {11dt} \,\,\left( m \right)\)
c) Đúng
Trong khoảng thời gian từ \(8\) đến \(15\) giây, đồ thị \(v\left( t \right)\)là một đường thẳng đi qua hai điểm \(\left( {8;21} \right)\) và \(\left( {15;0} \right)\). Ta có: \(v\left( t \right) = at + b\).
Từ giả thiết ta có hệ: \(\left\{ {\begin{array}{*{20}{c}}{8a + b = 21}\\{15a + b = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 3}\\{b = 45}\end{array}} \right.\).
Do đó \(v\left( t \right) = - 3t + 45\,\,\left( {8 \le t \le 15} \right)\).
Quãng đường chất điểm đi được trong khoảng thời gian này là:
\({S_2} = \int\limits_8^{15} {\left( { - 3t + 45} \right)dt} = - \frac{{3{t^2}}}{2}\left| {\begin{array}{*{20}{c}}{15}\\8\end{array}} \right. + 45t\left| {\begin{array}{*{20}{c}}{15}\\8\end{array}} \right. = \frac{{147}}{2} = 73,5\,\left( m \right)\).
d) Sai
Trong khoảng thời gian từ \(3\) đến \(8\) giây đồ thị \(v\left( t \right)\) là một Parabol đi qua \(\left( {3;11} \right),\left( {5;3} \right),\left( {8;21} \right)\) có phương trình dạng: \(v\left( t \right) = a{t^2} + bt + c\).
Từ giả thiết ta có: \(\left\{ {\begin{array}{*{20}{c}}{9a + 3b + c = 11}\\{25a + 5b + c = 3}\\{64a + 8b + c = 21}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 2}\\{b = - 20}\\{c = 53}\end{array}} \right.\)
Do đó: \(v\left( t \right) = 2{t^2} - 20t + 53\,\,\left( {3 \le t \le 8} \right)\).
Quãng đường chất điểm đi được trong khoảng thời gian này là:
\[{S_3} = \int\limits_3^8 {v\left( t \right)dt} = \int\limits_3^8 {\left( {2{t^2} - 20t + 53} \right)dt = \,\,} \left( {\frac{{2{t^3}}}{3} - 10{t^2} + 53t} \right)\left| {\begin{array}{*{20}{c}}8\\3\end{array}} \right. = \frac{{115}}{3}\,\,\,\left( m \right)\]
Vận tốc trung bình của chất điểm trong khoảng thời gian này là:
\({v_{tb}} = \frac{{{S_3}}}{5} = \frac{{23}}{3} \approx 7,67\,\left( {m/s} \right)\).Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a)Diện tích đáy tòa nhà \({S_{ABCD}} = 1000\left( {{m^2}} \right).\)
b)Diện tích thiết diện hình vuông chính giữa (nhận O là tâm) bằng \(200\left( {{m^2}} \right).\)
c)Diện tích thiết diện \(ACPM\) bằng \(1200\left( {{m^2}} \right).\)
Lời giải
a)CHỌN SAI

+)Chiều cao tòa nhà là \(48m \Rightarrow OI = 24m\)\( \Rightarrow IP = \sqrt {O{P^2} - O{I^2}} = \sqrt {{{30}^2} - {{24}^2}} = 18\)
+)\(PQ = 18\sqrt 2 = AB \Rightarrow {S_{ABCD}} = 648{m^2}\)
b)CHỌN ĐÚNG
Gọi L là tâm cung tròn như hình vẽ.

+)Ta tính được
\(LP = 40 \Rightarrow LO = 50 \Rightarrow {\rm{OF}} = 10 \Rightarrow {S_{td}} = 200\left( {{m^2}} \right)\)
c)CHỌN ĐÚNG.

Ta có \({S_{LCP}} = 768\) và \(\cos \widehat {CLP} = \frac{{{{40}^2} + {{40}^2} - {{48}^2}}}{{2.40.40}} = \frac{7}{{25}} \Rightarrow \widehat {CLP} \approx 1,29(rad)\).
+)Diện tích quạt tròn \(LCFP\) là \({S_{LCFP}} = \frac{{1,{{29.40}^2}}}{2} = 1032\left( {{m^2}} \right)\)
+) Diện tích tam giác cong \(CFP\)là \({S_{CFP}} = 1032 - 768 = 264\left( {{m^2}} \right)\)\( \Rightarrow {S_{ACPM}} = 2\left( {{S_{GCPI}} - {S_{CFP}}} \right) = 2\left( {48.18 - 264} \right) = 1200\left( {{m^2}} \right)\)
d)CHỌN ĐÚNG.
Chọn hệ trục như hình vẽ.

+)Phương trình đường tròn \[\left( {L;40} \right)\] là \[{\left( {x - 50} \right)^2} + {y^2} = 1600 \Rightarrow x = 50 - \sqrt {1600 - {y^2}} \].
+)Độ dài đường chéo thiết diện phẳng cắt bởi mặt phẳng vuông góc với Oy là
\[2\left( {50 - \sqrt {1600 - {y^2}} } \right)\]
Suy ra \[ \Rightarrow S\left( y \right) = {\left( {2\left( {50 - \sqrt {1600 - {y^2}} } \right)} \right)^2}\]
+)Vậy thể tích ngôi nhà là \[V = 2\int\limits_0^{24} {S\left( y \right){\rm{d}}y} = 2\int\limits_0^{24} {{{\left( {2\left( {50 - \sqrt {1600 - {y^2}} } \right)} \right)}^2}} .{\rm{d}}y = 31295\,\,\left( {{m^3}} \right)\].Lời giải
Đặt tọa độ như hình vẽ, ta có parabol cần tìm đi qua \(3\) điểm có toạn độ lần lượt là \(A\left( {0;6} \right),B\left( {1;3} \right),C\left( {3;0} \right)\) nên có phương trình là \(y = \frac{1}{2}{x^2} - \frac{7}{2}x + 6\)
Theo hình vẽ ta có bán kính của bát giác là \(BM\).
Suy ra: \(2y = {x^2} - 7x + 12 \Rightarrow {\left( {x - \frac{7}{2}} \right)^2} = 2y + \frac{1}{4} \Rightarrow |x - \frac{7}{2}| = \sqrt {2y + \frac{1}{4}} \)
Mà \(x \in \left[ {0;3} \right] \Rightarrow \frac{7}{2} - x = \sqrt {2y + \frac{1}{4}} \)
Nếu ta đặt \(t = OM\)thì \(BM = \frac{7}{2} - \sqrt {2t + \frac{1}{4}} \)
Khi đó diện tích của thiết diện thiết diện lục giác:
\[S(t) = 6.\frac{{B{M^2}.\sqrt 3 }}{4} = \frac{{3\sqrt 3 }}{2}.{(\frac{7}{2} - \sqrt {2t + \frac{1}{4}} )^2}\] với \(t \in [0;6]\)
Vậy thể tích của mái chòi theo đề bài là:
\[V = \int\limits_0^6 {S(t)dt} = \int\limits_0^6 {\frac{{3\sqrt 3 }}{2}.{{(\frac{7}{2} - \sqrt {2t + \frac{1}{4}} )}^2}dt} = 29,2{m^3}\]Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Một vật chuyển động trong \(4\)giờ với vận tốc .\[\]. phụ thuộc vào thời gian (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid39-1769864005.png)
![Đồ thị của hàm số y = f(x) trên đoạn [ -3;5 ] như hình vẽ dưới đây (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2026/01/blobid28-1769862451.png)