Câu hỏi:

01/02/2026 12 Lưu

Cho đồ thị hàm số \(y = {x^3} - 2{x^2} - 3x + 4\,\left( C \right)\) và đường thẳng \(d:y = 2x - 2\). Các khẳng định sau là đúng hay sai?

Cho đồ thị hàm số \(y = {x^3} - 2{x^2} - 3x + 4 (ảnh 1)

a) Đường thẳng \(d\) cắt  đồ thị \(\left( C \right)\) tại ba điểm \(A\left( { - 2; - 6} \right),\,B\left( {1;0} \right),\,C\left( {3;4} \right)\).

Đúng
Sai

b) Diện tích hình phẳng giới hạn bởi đồ thị \(\left( C \right)\), trục hoành, đường thẳng \(x =  - 1;\,x = 2\)bằng \(\frac{{21}}{4}\).

Đúng
Sai

c) Diện tích hình phẳng  giới hạn bởi đồ thị \(\left( C \right)\) và đường thẳng \(d\) bằng \(\frac{{253}}{{12}}\).

Đúng
Sai
d) Biết đường thẳng \(d\) cắt đồ thị \(\left( C \right)\) thành hai miền \({S_1}\) và \({S_2}\). Tỉ số \(\frac{{{S_1}}}{{{S_2}}} = \frac{{63}}{{16}}\)
Đúng
Sai

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng

Ta có phương trình hoành độ giao điểm: \({x^3} - 2{x^2} - 3x + 4 = 2x - 2 \Leftrightarrow {x^3} - 2{x^2} - 5x + 6 = 0\)

\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x =  - 2}\\{x = 1}\\{x = 3}\end{array}} \right.\). Với: \[\begin{array}{l}x =  - 2 \Rightarrow y =  - 6\\\,x = 1 \Rightarrow y = 0\\\,x = 3 \Rightarrow y = 4\end{array}\].Vậy đường thẳng \(d\) cắt  đồ thị \(\left( C \right)\) tại ba điểm \(A\left( { - 2; - 6} \right),\,B\left( {1;0} \right),\,C\left( {3;4} \right)\).

b) Sai

Diện tích cần tính là: \(S = \int\limits_{ - 1}^2 {\left| {{x^3} - 2{x^2} - 3x + 4} \right|} dx = \frac{{97}}{{12}}\).

c) Đúng

Ta có \[(S):\left\{ \begin{array}{l}y = f\left( x \right) = {x^3} - 2{x^2} - 3x + 4\\y = g\left( x \right) = 2x - 2\\x =  - 2\\x = 3\end{array} \right.\]. \(\)Ta có: \(f\left( x \right) - g\left( x \right) = {x^3} - 2{x^2} - 5x + 6\).

Diện tích: \(S = {S_1} + {S_2} = \int\limits_{ - 2}^1 {\left| {{x^3} - 2{x^2} - 5x + 6} \right|} dx + \int\limits_1^3 {\left| {{x^3} - 2{x^2} - 5x + 6} \right|} dx = \frac{{63}}{4} + \frac{{16}}{3} = \frac{{253}}{{12}}\).

d) Sai

Ta có: \(\frac{{{S_1}}}{{{S_2}}} = \frac{{\frac{{63}}{4}}}{{\frac{{16}}{3}}} = \frac{{189}}{{64}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Diện tích đáy của hình trụ là: \({\rm{S}} = \pi {x^2}\)

Dung tích của lu nước là: \(V = \pi \int\limits_0^9 \pi  {x^2}dx = 243{\pi ^2}\)\(\left( {{\rm{d}}{{\rm{m}}^3}} \right)\)

Lời giải

Dung tích nước trong chậu bằng nửa thể tích của chậu nên ta có phương trình

\(\pi \int\limits_0^x {(10 + } \sqrt x {)^2}dx = \frac{1}{2}\pi \int\limits_0^{16} {(10 + } \sqrt x {)^2}dx \Leftrightarrow \pi \left. {\left( {100x + \frac{{40}}{3}x\sqrt x  + \frac{{{x^2}}}{2}} \right)} \right|_0^x = \frac{1}{2}\pi \left. {\left( {100x + \frac{{40}}{3}x\sqrt x  + \frac{{{x^2}}}{2}} \right)} \right|_0^{16}\)

\( \Leftrightarrow 100x + \frac{{40}}{3}x\sqrt x  + \frac{{{x^2}}}{2} = \frac{{3872}}{3}\)

Đặt t =\(\sqrt x \)(t>0)

Ta được phương trình \(100{t^2} + \frac{{40}}{3}{t^3} + \frac{{{t^4}}}{2} = \frac{{3872}}{3}\). Đặt \(f(t) = 100{t^2} + \frac{{40}}{3}{t^3} + \frac{{{t^4}}}{2}\)

\(f'(t) = 200t + 40{t^2} + 2{t^3} > 0\,\,\,(\forall t > 0)\)nên \(f(t)\) đồng biến trên \((0; + \infty )\)

Do đó phương trình trên có nghiệm duy nhất t \( \approx 2,990279433\)

Vậy \(x = {t^2} \approx 8,94\)(cm)

Câu 3

a) Diện tích hình phẳng \(D\) giới hạn bởi đồ thị hàm số \(\left( C \right)\), trục tung, trục hoành  là \(\frac{3}{2} - 2\ln 2.\)

Đúng
Sai

b) Diện tích hình phẳng \(H\) giới hạn bởi đồ thị hàm số \(\left( C \right)\), đường thẳng \(d\), \(x = 1\,,\,\,x = 2\) là \(\frac{5}{2} + 2\ln \frac{3}{2}\).

Đúng
Sai

c) Thể tích của khối tròn xoay tạo thành khi quay hình phẳng \(D\) quanh trục \(Ox\) là \[\left( {\frac{{20}}{3} - 12\ln 2} \right)\pi \].

Đúng
Sai
d) Thể tích của khối tròn xoay tạo thành khi quay hình phẳng \(H\) quanh trục \(Ox\) là \[\left( {12\ln \frac{3}{2} - 1} \right)\pi .\]
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

a) Diện tích hình học phẳng được giới hạn bới hàm số đã cho, trục hoành, \(x =  - 1\)và \(x = 1\) là  \(\frac{{{e^2} - 1}}{e}\).

Đúng
Sai

b) Với \(a = \ln 4\) thì diện tích hình học phẳng được giới hạn bới hàm số đã cho, các trục tọa độ và đường thẳng \(x = a\) bằng \(3\).

Đúng
Sai

c) Cho hình phẳng \[D\] giới hạn bởi đường cong \[y = {e^x},\] trục hoành và các đường thẳng  \[x = 0,\]\[x = 1.\] Khối tròn xoay tạo thành khi quay \[D\] quanh trục hoành có thể tích \(V\) bằng \[V = 2\pi \left( {{e^2} - 1} \right)\].

Đúng
Sai
d) Gọi \(d\) là tiếp tuyến của đồ thị hàm số \(\left( C \right)\)đã cho tại điểm \({x_0} = 0\). Diện tích hình học phẳng được giới hạn bởi đường thẳng \(d\), trục hoành , \(x =  - 1\) và \(x = 1\) là \(2\).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[10 + \frac{3}{{\ln 2}}\]. 
B. \[10 - \frac{3}{{\ln 2}}\]. 
C. \[10 - \frac{4}{{\ln 2}}\].            
D. \[10 + \frac{4}{{\ln 2}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP