Cho các hàm số \(f\left( x \right) = \frac{{2x - 3}}{x}\) và \(g\left( x \right) = \frac{3}{{{x^2}}}\) xác định trên tập \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).
Các mệnh đề sau đúng hay sai?
Cho các hàm số \(f\left( x \right) = \frac{{2x - 3}}{x}\) và \(g\left( x \right) = \frac{3}{{{x^2}}}\) xác định trên tập \(D = \mathbb{R}\backslash \left\{ 0 \right\}\).
Các mệnh đề sau đúng hay sai?Câu hỏi trong đề: Đề kiểm tra Ôn tập chương 4 (có lời giải) !!
Quảng cáo
Trả lời:
|
Mệnh đề |
Đúng |
Sai |
|
a. Mệnh đề 1 Hàm số \(f\left( x \right)\) là một nguyên hàm của hàm số \(g\left( x \right)\) trên D. |
x |
|
|
b. Mệnh đề 2 Hàm số \(F\left( x \right) = 2x - 3\ln \left| x \right| + C\) là họ các nguyên hàm của hàm số \(f\left( x \right)\). |
x |
|
|
c. Mệnh đề 3 Cho \(F\left( 1 \right) = 5\), khi đó \(F\left( x \right) = 2x - 3\ln \left| x \right| + 3\). |
x |
|
|
d. Mệnh đề 4 \(G\left( x \right)\) là một nguyên hàm của hàm số \(xf\left( x \right)\) thỏa mãn \(G\left( 1 \right) = 4\). Khi đó \(G\left( 2 \right) = 2\). |
|
x |
a) Ta có \(f'\left( x \right) = \frac{3}{{{x^2}}} = g\left( x \right),\forall x \in D\). Vậy hàm số \(f\left( x \right)\) là một nguyên hàm của hàm số \(g\left( x \right)\) trên D. Chọn đúng.
b) Ta có \(F\left( x \right) = \int {f\left( x \right)} dx = \int {\frac{{2x - 3}}{x}dx = \int {\left( {2 - \frac{3}{x}} \right)} } dx = 2x - 3\ln \left| x \right| + C\). Chọn đúng.
c) Vì \(F\left( 1 \right) = 5 \Rightarrow 2.1 - 3\ln 1 + C = 5 \Rightarrow C = 3\). Vậy \(F\left( x \right) = 2x - 3\ln \left| x \right| + 3\). Chọn đúng.
d) Vì \(G\left( x \right) = \int {xf\left( x \right)} dx = \int {x\left( {\frac{{2x - 3}}{x}} \right)} dx = \int {\left( {2x - 3} \right)} dx = {x^2} - 3x + C\), và \(G\left( 1 \right) = 4 \Rightarrow 1 - 3.1 + C = 4 \Rightarrow C = 6 \Rightarrow G\left( x \right) = {x^2} - 3x + 6\). Vậy \(G\left( 2 \right) = 4\). Chọn sai.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
a) \(m = - 4\).
b) \(F\left( x \right) = \left\{ \begin{array}{l}{x^3} - {x^2} - 4x + 7\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\x - 2x{}^2\,\, + 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\).
c) \[\int\limits_{ - 1}^5 {f\left( x \right)dx} = 108\].
Lời giải
a) ĐÚNG
Ta có \(f\left( x \right)\) liên tục trên \(\mathbb{R}\) nên \(f\left( x \right)\) liên tục tại \(x = 1\).
Do đó \(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = f\left( 1 \right)\)\( \Leftrightarrow m + 1 = - 3 \Leftrightarrow m = - 4\).
b) ĐÚNG
Ta có \(F\left( x \right) = \left\{ \begin{array}{l}{x^3} - {x^2} + mx + {C_1}\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\x - 2x{}^2\,\, + {C_2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\)
\(F\left( { - 2} \right) = \left( { - 2} \right) - 2.{\left( { - 2} \right)^2} + {C_2} = {C_2} - 10 \Rightarrow {C_2} = 10 - 6 = 4\).
\(\mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {{x^3} - {x^2} + mx + {C_1}} \right) = m + {C_1}\).
\(\mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x - 2{x^2} + {C_2}} \right) = - 1 + {C_2} = 3\).
Ta lại có \(F\left( x \right)\) liên tục tại \(x = 1\).
Do đó \(\mathop {\lim }\limits_{x \to {1^ - }} F\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} F\left( x \right) = F\left( 1 \right)\)\[ \Leftrightarrow m + {C_1} = 3 \Leftrightarrow {C_1} = 3 - m = 7\].
Vậy \(F\left( x \right) = \left\{ \begin{array}{l}{x^3} - {x^2} - 4x + 7\,\,\,\,\,{\rm{khi}}\,\,x \ge 1\\x - 2x{}^2\,\, + 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{khi}}\,\,x < 1\end{array} \right.\).
c) SAI
Ta có \[\int\limits_{ - 1}^5 {f\left( x \right)dx} = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^5 {f\left( x \right)dx} = \int\limits_{ - 1}^1 {\left( {1 - 4x} \right)dx} + \int\limits_1^5 {\left( {3{x^2} - 2x - 4} \right)dx} = 86\]
d) SAI
Đặt \(t = \ln x \Rightarrow dt = \frac{1}{x}dx\).
Khi \(x = 1 \Rightarrow t = 0\);
Khi \(x = {e^2} \Rightarrow t = 2\).
Do đó
\[\int\limits_1^{{e^2}} {f\left( {\ln x} \right)\frac{1}{x}dx} = \int\limits_0^2 {f\left( t \right)dt} = \int\limits_0^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} = \int\limits_0^1 {\left( {1 - 4x} \right)dx} + \int\limits_1^2 {\left( {3{x^2} - 2x - 4} \right)dx} = - 1\].Lời giải
Khi lò xo được kéo giãn từ độ dài từ \(10cm\) đến\(15cm\), thì lượng kéo giãn là \(x = 15 - 10 = 5cm \Rightarrow x = 0,05m\). Điều này có nghĩa là \(f\left( {0,05} \right) = 50 \Rightarrow 0,05.k = 50 \Rightarrow k = 50:0,05 = 1000\left( {N/m} \right)\).
Do đó, ta có:
\(f\left( x \right) = 1000.x\left( N \right)\) và công cần thực hiện để kéo giãn lò xo từ \(15cm\) đến \(20cm\) là
\(A = \int\limits_{0,15}^{0,2} {1000xdx = 1000 \cdot \frac{{{x^2}}}{2}} \left| \begin{array}{l}0,2\\0,15\end{array} \right. = 1000 \cdot \left( {\frac{{{{0.2}^2}}}{2} - \frac{{0,{{15}^2}}}{2}} \right) = 8,75\left( J \right)\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


