Câu hỏi:

03/02/2026 6 Lưu

Tìm \(m\) để phương trình \({x^2} - 4x + m = 0\) có hai nghiệm \({x_1};{x_2}\) thỏa mãn điều kiện \({x_1} - {x_2} = 4\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(a = 1;b =  - 4 \Rightarrow \;b' =  - 2;c = m\). Phương trình có hai nghiệm \({x_1};{x_2}\) khi và chỉ khi

\(\left\{ {\begin{array}{*{20}{l}}{a \ne 0}\\{\Delta ' \ge 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{1 \ne 0}\\{4 - m \ge 0}\end{array} \Leftrightarrow \;m \le 4} \right.} \right.\)

Theo hệ thức Viète, ta có: \({x_1} + {x_2} = 4;{x_1}{x_2} = m\). Xét hệ: \(\left\{ {\begin{array}{*{20}{l}}{{x_1} + {x_2} = 4}\\{{x_1} - {x_2} = 4}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_1} = 4}\\{{x_2} = 0}\end{array}} \right.} \right.\)

Vậy \(m = 0\) (thỏa điều kiện \(m \le 4\)).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(A\) thuộc đường thẳng \({\rm{y}} = 2{\rm{x}} - 1\) và hoành độ bằng 2 nên tung độ của \(A:y = 2.2 - 1 \Rightarrow y = 3\). Vậy \(A(2;3)\).

Lại có A là giao điểm của parabol \(y = (m + 1){x^2}\) và \(y = 2x - 1\) nên ta có \(3 = (m + 1) \cdot {(2)^2}\)

\( \Rightarrow 4\;{\rm{m}} + 4 = 3 \Rightarrow \;{\rm{m}} =  - \frac{1}{4}\). Vậy \({\rm{y}} = \frac{3}{4}{{\rm{x}}^2}\).

b) Vẽ parabol (P): \(y = \frac{3}{4}{x^2}\).

Bảng giá trị:

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 1)

Parabol \(({\rm{P}})\) có đỉnh O và nhận trục tung làm trục đối xứng.

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 2)

Lời giải

Ta có \(a = 3;b = 2;c =  - 6 \Rightarrow \;a.c =  - 18 < 0 \Rightarrow \) phương trình luôn có hai nghiệm phân biệt (khác dấu) \({x_1},{x_2}\).

Theo định lí Viète, ta có: \({x_1} + {x_2} =  - \frac{2}{3};{x_1}{x_2} =  - 2\).

Vậy \(A = {x_1}^2 - 2{x_1}{x_2} + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = {\left( { - \frac{2}{3}} \right)^2} - 4.( - 2) = \frac{{76}}{9}\)

Nhận xét: Từ kết quả trên, ta có thể tìm được: \(\left| {{x_1} - {x_2}} \right| = \frac{{\sqrt {76} }}{3} = \frac{{2\sqrt {19} }}{3} \Rightarrow {x_1} - {x_2} =  \pm \frac{{2\sqrt {19} }}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP