Câu hỏi:

03/02/2026 5 Lưu

Một nhóm thợ phải thực hiện kế hoạch sản suất 3000 sản phẩm. Trong 8 ngày đầu, họ thực hiện đúng mức đề ra, những ngày còn lại họ đã vượt mức mỗi ngày 10 sản phẩm, nên đã hoàn thành sớm hơn dự định 2 ngày. Hỏi theo kế hoạch, mỗi ngày cần phải sản xuất bao nhiêu sản phẩm?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số sản phẩm theo kế hoạch mỗi ngày cần sản xuất là \(x\) (sản phẩm/ngày, \(\left. {x \in {\mathbb{Z}^*}} \right)\).

Suy ra số sản phẩm làm trong 8 ngày đầu là \(8x\) (sản phẩm).

Thời gian làm số sản phẩm còn lại là: \(\frac{{3000 - 8x}}{{x + 10}}\) (ngày).

Thời gian theo kế hoạch là \(\frac{{3000}}{x}\)(ngày).

Theo đề Câu nhóm thợ đã hoàn thành sớm hơn 2 ngày so với dự định, ta có phương trình:

\(8 + \frac{{3000 - 8x}}{{x + 10}} + 2 = \frac{{3000}}{x} \Leftrightarrow {x^2} + 50x - 15000 = 0\).

Ta có\(\Delta  = {21^2} - 4 \cdot \left( { - 270} \right) = 1521 > 0\) nên phương trình có hai nghiệm \({x_1} =  - 30\) (loại); \({x_2} = 9\) (nhận).

Vậy mỗi ngày nhó thợ cần sản xuất 9 sản phẩm.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(A\) thuộc đường thẳng \({\rm{y}} = 2{\rm{x}} - 1\) và hoành độ bằng 2 nên tung độ của \(A:y = 2.2 - 1 \Rightarrow y = 3\). Vậy \(A(2;3)\).

Lại có A là giao điểm của parabol \(y = (m + 1){x^2}\) và \(y = 2x - 1\) nên ta có \(3 = (m + 1) \cdot {(2)^2}\)

\( \Rightarrow 4\;{\rm{m}} + 4 = 3 \Rightarrow \;{\rm{m}} =  - \frac{1}{4}\). Vậy \({\rm{y}} = \frac{3}{4}{{\rm{x}}^2}\).

b) Vẽ parabol (P): \(y = \frac{3}{4}{x^2}\).

Bảng giá trị:

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 1)

Parabol \(({\rm{P}})\) có đỉnh O và nhận trục tung làm trục đối xứng.

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 2)

Lời giải

Ta có \(a = 3;b = 2;c =  - 6 \Rightarrow \;a.c =  - 18 < 0 \Rightarrow \) phương trình luôn có hai nghiệm phân biệt (khác dấu) \({x_1},{x_2}\).

Theo định lí Viète, ta có: \({x_1} + {x_2} =  - \frac{2}{3};{x_1}{x_2} =  - 2\).

Vậy \(A = {x_1}^2 - 2{x_1}{x_2} + {x_2}^2 = {\left( {{x_1} + {x_2}} \right)^2} - 4{x_1}{x_2} = {\left( { - \frac{2}{3}} \right)^2} - 4.( - 2) = \frac{{76}}{9}\)

Nhận xét: Từ kết quả trên, ta có thể tìm được: \(\left| {{x_1} - {x_2}} \right| = \frac{{\sqrt {76} }}{3} = \frac{{2\sqrt {19} }}{3} \Rightarrow {x_1} - {x_2} =  \pm \frac{{2\sqrt {19} }}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP