Câu hỏi:

03/02/2026 5 Lưu

Một lâm trường dự định làm 75 ha rừng trong một tuần lễ. Do trồng mỗi tuần vượt mức 5 ha so với kế hoạch nên đã trồng được 80 ha và hoàn thành sớm 1 tuần. Hỏi mỗi tuần dự định trồng bao nhiêu ha rừng?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số ha dự định trồng mỗi tuần là \(x\,({\rm{ha}},x > 0)\).

Suy ra thực tế mỗi tuần trồng được \(x + 5\) (ha).

Thời gian dự định trồng 75 ha rừng là \(\frac{{75}}{x}\) (tuần).

Thời gian thực tế trồng 80 ha rừng là \(\frac{{80}}{{x + 5}}\) (tuần).

Theo đề bài, thực tế hoàn thành sớm 1 tuần ta có phương trình

\(\frac{{75}}{x} - \frac{{80}}{{x + 5}} = 1 \Leftrightarrow {x^2} + 10x - 375 = 0\).

\(\Delta  = {10^2} - 4 \cdot ( - 375) = 1600 > 0\) nên phương trình có nghiệm \({x_1} =  - 25\) (loại); \({x_2} = 15\) (nhận).

Vậy mỗi tuần lâm trường dự định trồng 15 ha.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(A\) thuộc đường thẳng \({\rm{y}} = 2{\rm{x}} - 1\) và hoành độ bằng 2 nên tung độ của \(A:y = 2.2 - 1 \Rightarrow y = 3\). Vậy \(A(2;3)\).

Lại có A là giao điểm của parabol \(y = (m + 1){x^2}\) và \(y = 2x - 1\) nên ta có \(3 = (m + 1) \cdot {(2)^2}\)

\( \Rightarrow 4\;{\rm{m}} + 4 = 3 \Rightarrow \;{\rm{m}} =  - \frac{1}{4}\). Vậy \({\rm{y}} = \frac{3}{4}{{\rm{x}}^2}\).

b) Vẽ parabol (P): \(y = \frac{3}{4}{x^2}\).

Bảng giá trị:

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 1)

Parabol \(({\rm{P}})\) có đỉnh O và nhận trục tung làm trục đối xứng.

Cho hàm số \({\rm{y}} = ({\rm{m} (ảnh 2)

Lời giải

Gọi \(x\) và \(y\) là hai số cần tìm. Theo đề Câu, ta có hệ

\(\left\{ {\begin{array}{*{20}{l}}{2x - 3y = 9}\\{{x^2} - {y^2} = 119}\end{array}} \right.\)

Giải ra hai số cần tìm là \(\left( {12;5} \right)\) hoặc \(\left( { - 19,2; - 15,8} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP