Câu hỏi:

05/02/2026 6 Lưu

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy  là tam giác cân với \(AB = AC = 1\) và góc \(\widehat {BAC} = {120^o}\) và cạnh bên \(BB' = 1\). Gọi \(I\) là trung điểm của \(CC'\). Tính cosin góc giữa hai mặt phẳng \(\left( {ABC} \right)\) và \(\left( {AB'I} \right)\).

A. \(\frac{{\sqrt {30} }}{{10}}\).     
B. \(\frac{{\sqrt 3 }}{{10}}\).           
C. \(\frac{{\sqrt {30} }}{{30}}\).         
D. \(\frac{{\sqrt {10} }}{{30}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy  là tam giác cân với \(AB = AC = 1\) và góc (ảnh 1)

· Gọi \(O\)là trung điểm của \(BC\). Gắn hệ trục tọa độ như hình vẽ.

Ta có: \(OB = AB\sin 60^\circ  = \frac{{\sqrt 3 }}{2}\); \(OA = AB\cos 60^\circ  = \frac{1}{2}\).

· Suy ra \(A\left( {\frac{1}{2};0;0} \right)\), \(B\left( {0; - \frac{{\sqrt 3 }}{2};0} \right)\),\(C\left( {0;\frac{{\sqrt 3 }}{2};0} \right)\), \(I\left( {0;\frac{{\sqrt 3 }}{2};\frac{1}{2}} \right)\), \(B'\left( {0; - \frac{{\sqrt 3 }}{2};1} \right)\).

Ta có: \(\overrightarrow {{n_1}}  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {0;0; - \frac{{\sqrt 3 }}{2}} \right)\) và \(\overrightarrow {{n_2}}  = \left[ {\overrightarrow {AB'} ,\overrightarrow {AI} } \right] = \left( { - \frac{{3\sqrt 3 }}{4}; - \frac{1}{4}; - \frac{{\sqrt 3 }}{2}} \right)\)

· Gọi \(\alpha \) là góc giữa \(\left( {ABC} \right)\) và \(\left( {AB'I} \right)\). Suy ra: \(\cos \alpha  = \frac{{\left| {\overrightarrow {{n_1}} .\overrightarrow {{n_2}} } \right|}}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \sqrt {\frac{3}{{10}}}  = \frac{{\sqrt {30} }}{{10}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

a) Một vectơ pháp tuyến của \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) là \(\overrightarrow {{n_1}}  = \left( {1;\,0;\, - 1} \right)\).

Đúng
Sai

b) Với \(x = 3\) thì góc của \({B_1}D\) mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) bằng \(60^\circ \).

Đúng
Sai

c) Với \(x = 2\) thì  góc giữa mặt phẳng \(\left( {C{B_1}{D_1}} \right)\) và mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\)bằng \(45^\circ \).                               

Đúng
Sai
d) Với \(x = 4\) thì góc giữa đường thẳng \({B_1}D\) mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) là lớn nhất.
Đúng
Sai

Lời giải

a) Sai.

Ta có \({D_1}\left( {0;\,0;\,0} \right)\), \({A_1}\left( {0;\,1;\,0} \right)\), C1 (1;0;0), \({B_1}\left( {1;\,1;\,0} \right)\).

\(\overrightarrow {{D_1}{A_1}}  = \left( {0;\,1;\,0} \right)\), \(\overrightarrow {{D_1}{C_1}}  = \left( {1;\,0;\,0} \right)\).

Một vectơ pháp tuyến của \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) là \(\overrightarrow {{n_1}}  = \left[ {\overrightarrow {{D_1}{A_1}} ;\,\overrightarrow {{D_1}{C_1}} } \right] = \left( {0;\,0;\, - 1} \right)\).

b) Sai.

Ta có \(D\left( {0;\,0;\,x} \right)\), \(\overrightarrow {D{B_1}}  = \left( {1;\,1;\, - x} \right)\).

Vì góc của \({B_1}D\) mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) bằng \(60^\circ \).

Suy ra \(sin\left( {{B_1}D;\,\left( {{A_1}{B_1}{C_1}{D_1}} \right)} \right) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \left| {cos\left( {\overrightarrow {{n_1}} ;\,\overrightarrow {D{B_1}} } \right)} \right| = \frac{{\sqrt 3 }}{2}\)\( \Leftrightarrow \frac{{\left| x \right|}}{{\sqrt {{x^2} + 2} }} = \frac{{\sqrt 3 }}{2} \Leftrightarrow {x^2} - 6 = 0 \Rightarrow x = \sqrt 6 \).

c) Sai.

Ta có \(C\left( {1;\,0;\,x} \right),\,\overrightarrow {{D_1}{B_1}}  = \left( {1;\,1;\,0} \right),\,\overrightarrow {{D_1}C}  = \left( {1;\,0;\,x} \right)\).

Mặt phẳng \(\left( {C{B_1}{D_1}} \right)\) có một vectơ pháp tuyến là \(\overrightarrow {{n_2}}  = \left[ {\overrightarrow {{D_1}{B_1}} ,\,\overrightarrow {{D_1}C} } \right] = \left( {x;\, - x;\, - 1} \right)\).

Vì góc giữa mặt phẳng \(\left( {C{B_1}{D_1}} \right)\) và mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\)bằng \(45^\circ \).

Suy ra \(\left| {cos\left( {\overrightarrow {{n_1}} ,\,\overrightarrow {{n_2}} } \right)} \right| = \frac{{\sqrt 2 }}{2} \Leftrightarrow \frac{{\left| 1 \right|}}{{\sqrt {2{x^2} + 1} }} = \frac{{\sqrt 2 }}{2} \Leftrightarrow 2{x^2} - 1 = 0 \Rightarrow x = \frac{{\sqrt 2 }}{2}\).

d) Sai

 Gọi góc giữa đường thẳng \({B_1}D\) mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) là \(\alpha \).

Khi đó \(\sin \alpha  = \frac{{\left| x \right|}}{{\sqrt {{x^2} + 2} }} = \frac{x}{{\sqrt {{x^2} + 2} }} < 1\).

Không tồn tại \(x\)để góc giữa đường thẳng \({B_1}D\) mặt phẳng \(\left( {{A_1}{B_1}{C_1}{D_1}} \right)\) lớn nhất.

Lời giải

Ta có : \[\overrightarrow {AB}  = \left( {0;15;\frac{{ - 4}}{5}} \right)\], mặt phẳng \[\left( {Oxy} \right)\] có vecto pháp tuyến là \[\overrightarrow n  = \left( {0;0;1} \right)\].

\[\sin \left( {AB,\left( {Oxy} \right)} \right) = \frac{{\left| {0.0 + 15.0 + 1.\frac{{ - 4}}{5}} \right|}}{{\sqrt {{0^2} + {{15}^2} + {{\left( {\frac{{ - 4}}{5}} \right)}^2}} .\sqrt {{0^2} + {0^2} + 1} }} = \frac{{4\sqrt {5641} }}{{5641}}\]

\[ \Rightarrow \left( {AB,\left( {Oxy} \right)} \right) \approx 3^\circ \]

Vậy góc giữa đường bay và sân bay khoảng \[3^\circ \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

a) Véc tơ pháp tuyến của mặt phẳng \[\left( \alpha  \right)\] là \[\overrightarrow {{n_\alpha }} \left( {1; - 2;2} \right)\], mặt phẳng \[\left( \beta  \right)\] là \[\overrightarrow {{n_\beta }} \left( {2\,;\,m\,;\,m} \right)\].

Đúng
Sai

b) Véc tơ chỉ phương của đường thẳng \[\Delta \] là \[\overrightarrow {{u_\Delta }} \left( {3\,;\, - 1\,;\,5} \right)\].

Đúng
Sai

c) Góc giữa đường thẳng \[\Delta \] và mặt phẳng \[\left( \alpha  \right)\] bằng \(60^\circ \).

Đúng
Sai
d)  Có hai giá trị của tham số \[m\]thỏa mãn góc giữa đường thẳng  \[\Delta \] và mặt phẳng \[\left( \beta  \right)\] bằng \(60^\circ \).
Đúng
Sai

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP