Cho hai biến cố \[A\] và \[B\]là hai biến cố ngẫu nhiên mà\(P(A) > 0\),\(P(B) > 0\), công thức Bayes là
Cho hai biến cố \[A\] và \[B\]là hai biến cố ngẫu nhiên mà\(P(A) > 0\),\(P(B) > 0\), công thức Bayes là
A. \[P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\].
B. \[P\left( {B|A} \right) = \frac{{P\left( A \right).P\left( {A|B} \right)}}{{P\left( B \right)}}\].
Câu hỏi trong đề: Đề kiểm tra Ôn tập chương 6 (có lời giải) !!
Quảng cáo
Trả lời:
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Gọi \(A\) là biến cố “học sinh đó thích học môn Toán”,
\(B\) là biến cố “học sinh đó thích học môn Văn”
Xác suất để học sinh được chọn thích học môn Toán, biết học sinh đó thích học môn Văn chính là \(P\left( {A|B} \right)\).
Ta có \(P\left( A \right) = \frac{{12}}{{20}} = \frac{3}{5}\), \(P\left( B \right) = \frac{{10}}{{20}} = \frac{1}{2}\), \(P\left( {\overline A \,\overline B } \right) = \frac{2}{{20}} = \frac{1}{{10}}\)
\(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \,\overline B } \right) = 1 - \frac{1}{{10}} = \frac{9}{{10}}\)
Ta có \(P\left( {AB} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cup B} \right) = \frac{3}{5} + \frac{1}{2} - \frac{9}{{10}} = \frac{1}{5}\)
\(P\left( {A|B} \right) = \frac{{P\left( {AB} \right)}}{{P\left( B \right)}} = \frac{1}{5}:\frac{1}{2} = \frac{2}{5}\)Câu 2
Lời giải
Xét hai biến cố sau:
A: "Học sinh được chọn ra đạt điểm giỏi";
\(B\): "Học sinh được chọn ra là học sinh nam".
Khi đó, xác suất để học sinh được chọn ra đạt danh hiệu học sinh giỏi và là nam, chính là xác suất của \(A\) với điểu kiện \(B\).
\({\rm{P}}(A \cap B) = \frac{{80}}{{600}} = \frac{2}{{15}}{\rm{. }}\)
Do có 245 học sinh nam nên \({\rm{P}}(B) = \frac{{245}}{{600}} = \frac{{49}}{{120}}\). Vì thế, ta có;
\({\rm{P}}(A\mid B) = \frac{{{\rm{P}}(A \cap B)}}{{{\rm{P}}(B)}} = \frac{{\frac{2}{{15}}}}{{\frac{{49}}{{120}}}} = \frac{{16}}{{49}}.\)
Vậy xác suất để học sinh được chọn ra đạt danh hiệu học sinh giỏi và là nam bằng \(\frac{{16}}{{49}}\).Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.