Câu hỏi:

13/07/2024 16,932 Lưu

Hình thoi ABCD có A = 600. Kẻ hai đường cao BE, BF. Tam giác BEF là tam giác gì? Vì sao?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hai tam giác vuông BEA và BFC, ta có:

(BEA) = (BFC) = 900

A = C (tính chất hình thoi)

BA = BC (gt)

Suy ra: BEA = BFC (cạnh huyền, góc nhọn)

Do đó, ta có:

* BE = BF ⇒ ΔBEF cân tại B

B1 = B2

Trong tam giác vuông BEA, ta có:

A + B1900 ⇒ B1900 – A = 900-600=300

⇒ B2B1 = 300

A + (ABC) = 1800 (hai góc trong cùng phía bù nhau)

⇒ (ABC) = 1800 – A = 1800-600=1200

⇒ (ABC) = B1B2B3

B3 = (ABC) – (B1 + B2) = 1200-300+300=600

Tam giác BEF cân tại B có (EBF) = 600 nên BEF đều.

Tiểu linh lan

Tiểu linh lan

Giải giúp với

Ảnh đính kèm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hai tam giác vuông AHC và AKC, ta có:

(AHC) = (AKC) = 900

AH = AK (gt)

AC cạnh huyền chung

Suy ra: AHC = AKC (cạnh huyền- cạnh góc vuông)

⇒ (ACH) = (ACK) hay (ACB) = (ACD)

⇒ CA là tia phân giác (BCD)

Hình bình hành ABCD có đường chéo CA là đường phân giác nên là hình thoi.

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

*Trong BCD,ta có:

K là trung điểm của BC (gt)

N là trung điểm của CD (gt)

Nên NK là đường trung bình của BCD

⇒ NK // BD và NK = 1/2 BD (1)

*Trong BED,ta có:

M là trung điểm của BE (gt)

I là trung điểm của DE (gt)

Nên MI là đường trung bình của BED

⇒ MI // BD và MI = 1/2 BD (t/chất đường trung bình trong tam giác) (2)

Từ (1) và (2) suy ra: MI // NK và MI = NK

Nên tứ giác MKNI là hình bình hành.

*Trong BEC ta có MK là đường trung bình.

⇒ MK = 1/2 CE (t/chất đường trung bình của tam giác)

BD = CE (gt). Suy ra: MK = KN

Vậy hình bình hành MKNI là hình thoi.

⇒IK ⊥ MN (t/chất hình thoi).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP