Câu hỏi:

13/07/2024 15,023

Hình thoi ABCD có chu vi bằng 16cm, đường cao AH = 2cm. Tính các góc của hình thoi, biết A > B

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Chu vi hình thoi bằng 16(cm) nên độ dài một cạnh bằng:

16 : 4 = 4(cm)

Gọi M là trung điểm của AD.

*Trong tam giác vuông AHD ta có HM là trung tuyến thuộc cạnh huyền, suy ra: HM = AM = 1/2 AD = 1/2 . 4 = 2(cm)

⇒ AM = HM = AH = 2cm

AHM đều

(HAM ) = 600

*Trong tam giác vuông AHD, ta có:

(HAD) + D = 900

⇒ D = 900(HAD) = 900 – 600 = 300

⇒ B = D = 300 ( t/chất hình thoi)

       B + C = 1800 ( hai góc trong cùng phía bù nhau)

C = 1800B = 1800 – 300 = 1500

⇒ A = C = 1500 ( tính chất hình thoi).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hai tam giác vuông AHC và AKC, ta có:

(AHC) = (AKC) = 900

AH = AK (gt)

AC cạnh huyền chung

Suy ra: AHC = AKC (cạnh huyền- cạnh góc vuông)

⇒ (ACH) = (ACK) hay (ACB) = (ACD)

⇒ CA là tia phân giác (BCD)

Hình bình hành ABCD có đường chéo CA là đường phân giác nên là hình thoi.

Lời giải

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Nối BD, ta có AB = AD (gt)

Suy ra ABD cân tại A

A = 600 ⇒ ABD đều

⇒ (ABD) = D1600 và BD = AB

Suy ra: BD = BC = CD

CBD đều ⇒ D2600

Xét BAM và BDN,ta có:

AB = BD ( chứng minh trên)

A = D2 = 600

AM = DN (giả thiết)

Do đó BAM = BDN ( c.g.c) ⇒ B1B3 và BM = BN

Suy ra ΔBMN cân tại B.

Mà B2+B1 = (ABD) = 600

Suy ra: B2B3 = B2 + B1 = 60° hay (MBN) = 600

Vậy BMN đều

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP