Câu hỏi:

09/07/2020 60,712

Cho đường tròn (O), điểm A nằm bên ngoài đường tròn. Kẻ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm).

a) Chứng minh rằng OA vuông góc với BC.

b) Vẽ đường kính CD. Chứng minh rằng BD song song với AO.

c) Tính độ dài các cạnh của tam giác ABC; biết OB = 2cm, OA = 4cm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Ta có: AB = AC (tính chất của hai tiếp tuyến cắt nhau). Nên ΔABC cân tại A.

Lại có AO là tia phân giác của góc A nên AO ⊥ BC. (trong tam giác cân, đường phân giác cũng là đường cao)

b) Gọi I là giao điểm của AO và BC. Suy ra BI = IC (đường kính vuông góc với một dây).

Xét ΔCBD có :

CI = IB

CO = OD (bán kính)

⇒ BD // HO (HO là đường trung bình của BCD) ⇒ BD // AO.

c) Theo định lí Pitago trong tam giác vuông OAC:

AC2 = OA2  OC2 = 42  22 = 12

=> AC = √12 = 2√3 (cm)

Để học tốt Toán 9 | Giải bài tập Toán 9

Do đó AB = BC = AC = 2√3 (cm).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Để học tốt Toán 9 | Giải toán lớp 9

Gọi O là tâm của một đường tròn bất kì tiếp xúc với hai cạnh góc xAy. Theo tính chất của hai tiếp tuyến cắt nhau ta có:

Để học tốt Toán 9 | Giải toán lớp 9

Hay AO là tia phân giác của góc xAy.

Vậy tâm các đường tròn tiếp xúc với hai cạnh của góc xAy nằm trên tia phân giác của góc xAy.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP