Câu hỏi:

09/07/2020 5,544

Cho nửa đường tròn tâm O có đường kính AB (đường kính của một đường tròn chia đường tròn đó thành hai nửa đường tròn). Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn nó cắt Ax và By theo thứ tự ở C và D. Chứng minh rằng:

a) ∠COD = 90o

b) CD = AC + BD

c) Tích AC.BD không đổi khi điểm M di chuyển trên nửa đường tròn.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để học tốt Toán 9 | Giải bài tập Toán 9

a) Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    OC là tia phân giác của ∠AOM

    OD và tia phân giác của ∠BOM

OC và OD là các tia phân giác của hai góc kề bù ∠AOM và ∠BOM nên OC ⊥ OD.

=> ∠COD = 90o (đpcm)

b) Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    CM = AC, DM = BC

Do đó: CD = CM + DM = AC + BD (đpcm)

c) Ta có: AC = CM, BD = DM nên AC.BD = CM.MD

ΔCOD vuông tại O, ta có:

CM.MD = OM2 = R2 (R là bán kính đường tròn O).

Vậy AC.BD = R2 (không đổi).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Theo tính chất của hai tiếp tuyến cắt nhau ta có:

    BD = BE, CE = CF, AD = AF

Ta có:

    AB + AC – BC = (AD + BD) + (AF + FC) – (BE + EC)

= (AD + AF) + (DB – BE) + (FC – EC)

= AD + AF = 2AD.

Vậy 2AD = AB + AC – BC (đpcm)

b) Tương tự ta tìm được các hệ thức:

    2BE = BA + BC – AC

    2CF = CA + CB – AB

Lời giải

Để học tốt Toán 9 | Giải bài tập Toán 9

- Chọn D.

- Gọi O là tâm đường tròn nội tiếp Δ ABC, H là tiếp điểm thuộc BC.

Đường phân giác AO của góc A cũng là đường cao nên A, O, H thẳng hàng.

Ta có: HB = BC, ∠HAC = 30o, AH = 3.OH = 3 (cm)

Để học tốt Toán 9 | Giải bài tập Toán 9