Câu hỏi:
12/07/2024 898Giải phương trình
Bằng cách điền vào các chỗ trống (…) và trả lời các câu hỏi.
- Điều kiện: x ≠ …
- Khử mẫu và biến đổi, ta được:
- Nghiệm của phương trình
Hỏi có thỏa mãn điều kiện nói trên không ? Tương tự, đối với ?
Vậy nghiệm của phương trình đã cho là:....
Quảng cáo
Trả lời:
- Điều kiện: x ≠ ±3
- Khử mẫu và biến đổi, ta được:
- Nghiệm của phương trình
có thỏa mãn điều kiện nói trên
không thỏa mãn điều kiện nói trên
Vậy nghiệm của phương trình đã cho là: x = 1
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)
Đặt (t ≥ 0). Phương trình trở thành:
Nhận thấy phương trình có dạng a + b + c = 0 nên phương trình có nghiệm
Do t ≥ 0 nên t = 1 thỏa mãn điều kiện
Với t = 1, ta có:
Vậy phương trình có 2 nghiệm
b)
Đặt . Phương trình trở thành:
Nhận thấy phương trình có dạng a - b + c = 0 nên phương trình có nghiệm
Cả 2 nghiệm của phương trình đều không thỏa mãn điều kiện t ≥ 0
Vậy phương trình đã cho vô nghiệm.
Lời giải
a)
Đặt t, điều kiện t ≥ 0.
Khi đó (1) trở thành :
Giải (2) : Có a = 1 ; b = -5 ; c = 4 ⇒ a + b + c = 0
⇒ Phương trình có hai nghiệm
Cả hai giá trị đều thỏa mãn điều kiện.
+ Với t = 1 ⇒ ⇒ x = 1 hoặc x = -1;
+ Với t = 4 ⇒ ⇒ x = 2 hoặc x = -2.
Vậy phương trình (1) có tập nghiệm S = {-2 ; -1 ; 1 ; 2}.
b)
Đặt , điều kiện t ≥ 0.
Khi đó (1) trở thành :
Giải (2) : Có a = 2 ; b = -3 ; c = -2
⇒ Phương trình có hai nghiệm
Chỉ có giá trị thỏa mãn điều kiện.
+ Với t = 2 ⇒ ⇒ x = √2 hoặc x = -√2;
Vậy phương trình (1) có tập nghiệm S = {-√2 ; √2}.
c)
Đặt , điều kiện t ≥ 0.
Khi đó (1) trở thành :
Giải (2) : Có a = 3; b' = 5; c = 3
⇒
⇒ Phương trình có hai nghiệm phân biệt
Cả hai giá trị đều không thỏa mãn điều kiện.
Vậy phương trình (1) vô nghiệm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.