Cho 2 số phức ; với z = x+ yi.
Mệnh đề nào sau đây đúng?
A. z1 và z2 là số thuần ảo.
B. z2 là số thuần ảo.
C. z1 là số thuần ảo.
D. z1 và z2 là số thực.
Câu hỏi trong đề: 100 câu trắc nghiệm Số phức nâng cao !!
Quảng cáo
Trả lời:

Chọn C.
Ta có: z = x+ yi nên z2 = x2 - y2 + 2xyi
Khi đó :
Suy ra z1 là số thuần ảo; z2 là số thuần thực.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. S = 9π.
B. S = 12π.
C. S = 16π.
D. S = 25π.
Lời giải
Chọn C.
Giả sử w = x + yi , khi đó ( 1) tương đương ( x - 7) 2+ ( y + 9) 2 ≤ 16
Suy ra tập hợp điểm biểu diễn số phức w là hình tròn tâm I(7; -9), bán kính r = 4
Vậy diện tích cần tìm là S = π.42 = 16π.
Câu 2
A. Đường tròn tâm O, bán kính R = 1.
B. Hình tròn tâm O, bán kính R = 1 (kể cả biên).
C. Hình tròn tâm O, bán kính R = 1 (không kể biên).
D. Đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0;1).
Lời giải
Chọn D.
Gọi M(a ; b) là điểm biểu diễn số phức z = a + bi
Ta có:
Để là số thuần ảo thì
Tập hợp các điểm M là đường tròn tâm O, bán kính R = 1 bỏ đi một điểm (0; 1).
Câu 3
A. đường thẳng.
B. đường tròn.
C. elip.
D. hypebol.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. 26.
B. 25.
C. 24.
D. 50.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.