Câu hỏi:
29/01/2021 3,281Cho số phức z thỏa mãn |z – 1 – 2i| = 2. Giá trị lớn nhất của T = |z| + |z – 3 – 6i| gần với giá trị nào nhất?
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Chọn C.
Ta có |z|2 = |(z – 1 – 2i) + (1 + 2i)|2 = |z – 1- 2i|2 + |1 + 2i|2 + 2(z – 1 – 2i)(1 + 2i) (1)
|z – 3 – 6i|2 = |(z – 1 – 2i) – 2(1 + 2i)|2 = |z – 1 – 2i|2 + 4|1 + 2i|2 - 4(z – 1- 2i)(1 + 2i) (2)
Từ (1) và (2) suy ra: 2|z|2 + |z – 3- 6i|2 = 3|z – 1- 2i|2 + 6|1 + 2i|2 = 12 + 30 = 42.
Áp dụng bất đẳng thức Bunhiakovsky ta có:
Vậy
Có
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho số phức z thỏa mãn điều kiện |z – 3 + 4i| ≤ 2. Trong mặt phẳng Oxy tập hợp điểm biểu diễn số phức w = 2z + 1 - i là hình tròn có diện tích
Câu 2:
Cho số phức z thỏa mãn là số thuần ảo. Tập hợp các điểm M biểu diễn số phức z là:
Câu 3:
Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 2| + |z – 2| = 5 trên mặt phẳng tọa độ là một
Câu 4:
Cho hai số phức z1 và z2 thỏa mãn | z1 + 2 z2| = 5 và |3 z1 - z2| = 3. Giá trị lớn nhất của P = | z1| + | z2| gần với số nguyên nào nhất?
Câu 5:
Cho số phức với m nguyên. Có bao nhiêu giá trị của m với 1≤ m≤ 50 để z là số thuần ảo?
Câu 7:
Cho các số phức z thỏa mãn |z2 + 4| = 2|z|. Kí hiệu M = max|z| và m = min|z|. Tìm module của số phức w = M + m?
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
56 câu Chuyên đề Toán 12 Bài 2: Lôgarit có đáp án
79 câu Chuyên đề Toán 12 Bài 2 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
87 câu Chuyên đề Toán 12 Bài 3 Dạng 1: Xác định vectơ pháp tuyến và viết phương trình mặt phẳng có đáp án
7881 câu Trắc nghiệm tổng hợp môn Toán 2023 cực hay có đáp án ( Phần 1)
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
124 câu Trắc nghiệm Ôn tập Toán 12 Chương 3 Hình học có đáp án (Phần 1)
80 câu Bài tập Hình học Khối đa diện có lời giải chi tiết (P1)
về câu hỏi!