Câu hỏi:

04/08/2020 1,566

Cho hình bình hành ABCD. Gọi E là trung điểm của AD, F là trung điểm của BC. Chứng minh BE = DF và ABE^ = CDF^.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lý thuyết: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Xét tứ giác BEDF cóLý thuyết: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ BEDF là hình bình hành

⇒ BE = DF (hai cạnh đối song song và bằng nhau)

Ta có: ABCD là hình bình hành nên

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Theo câu a, AICK là hình bình hành

⇒ AK//CI. Khi đó , ta có:Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Mặt khác, ta lại có: AI = IB, CK = KD theo giải thiết:

ÁP dụng định lý đường trung bình vào tam giác ABM, DCN ta có:

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ DM = MN = NB

Lời giải

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

Từ giả thiết ta có:

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ AH//CK.      ( 1 )

Áp dụng tính chất về cạnh của hình bình hành và tính chất của các góc so le ta có:

Bài tập: Hình bình hành | Lý thuyết và Bài tập Toán 8 có đáp án 

⇒ Δ ADH = Δ CBK

(trường hợp cạnh huyền – góc nhọn)

⇒ AH = CK (cạnh tương tứng bằng nhau)       ( 2 )

Từ ( 1 ) và ( 2 ) ta có tứ giác AHCK có cặp cạnh đối song song và bằng nhau là hình bình hành.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP