Câu hỏi:

19/08/2020 1,218

Cho mặt cầu (S) có bán kính R=a3. Gọi (T) là hình trụ có hai đường tròn đáy nằm trên (S) và diện tích thiết diện qua trục của hình trụ (T) là lớn nhất. Tính diện tích toàn phần Stp của (T).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án A

Gọi bán kính đáy và chiều cao của hình trụ  lần lượt là rh. Khi đó thiết diện qua trục của hình trụ là một hình chữ nhật có kích thước hai cạnh là 2rh. Diện tích hình chữ nhật đó là S=2rh .

Quan sát hình vẽ, ta thấyR2=h22+r2h=2R2r2=23a2r2 .

Khi đó S=2rh=4r3a2r24.r2+3a2r222=6a2 . Dấu “=” xảy ra khi và chỉ khi

r=3a2r22r2=3a2r=a62h=23a23a22=a6 

Vậy diện tích toàn phần của hình trụ (T) 

Stp=2πrh+2πr2=2πa6.a62+2πa622=9πa2(đvdt).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương trình cosx+1cos2xmcosx=msin2x

cosx+1cos2xmcosx=m1cosx1+cosx

cosx+1cos2xmcosxm1cosx=0cosx+1cos2xm=0

cosx+1=0cos2xm=0cosx=1cos2x=m

 Nếu x0;2π3   thì x12;1  (quan sát trên đường tròn lượng giác). Suy ra phương trình cosx=1  không có nghiệm trên đoạn 0;2π3 .

 Nếu x0;2π32x0;4π3 . Dựa vào đường tròn lượng giác, để phương trình cos2x=m  có đúng hai nghiệm 1<m12  .

Lời giải

Đáp án B

Thể tích của khối tròn xoay thu được khi quay elip có trục lớn AA'=8 , trục nhỏ BB'=6  khi quay quanh trục AA’ là VE=43π.AA'2.BB'22=43π.4.32=48π  (đvtt).

Thể tích khối tròn xoay thu được khi quay đường tròn O;BB'2  quanh trục AA’ cũng chính là thể tích khối cầu tâm O, bán kính R=3 . Thể tích đó là 

VO;3=43πR3=43π.33=36π(đvtt).

Vậy thể tích khối tròn xoay cần tính là V=VEVO;3=48π36π=12π  (đvtt)

Câu 3

Tổng S=1+11+111+...+11...111n  so 1 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Số hạng chính giữa trong khai triển 3x+2y4 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay