Câu hỏi:

20/08/2020 336

Cho hàm số y=f(x)  có đạo hàm cấp hai liên tục trên đoạn [0;1] và thỏa mãn 01exfxdx=01exf'xdx=01exf''xdx0. Giá trị của biểu thức e.f'1f'0e.f1f0 bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án D

01exfxdx=01exf'xdx=01exf''xdx=k0

Đặt 

u=exdv=f'xdxdu=exdxv=fx01exf'xdx=exfx0101exfxdx

k=e.f1f0kef1f0=2k.

Đặt 

u=exdv=f''xdxdu=exdxv=f'x01exf''xdx=exf'x0101exf'xdx

k=e.f'1f'0ke.f'1f'0=2k.

Vậy e.f'1f'0e.f1f0=2k2k=1

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Phương trình cosx+1cos2xmcosx=msin2x

cosx+1cos2xmcosx=m1cosx1+cosx

cosx+1cos2xmcosxm1cosx=0cosx+1cos2xm=0

cosx+1=0cos2xm=0cosx=1cos2x=m

 Nếu x0;2π3   thì x12;1  (quan sát trên đường tròn lượng giác). Suy ra phương trình cosx=1  không có nghiệm trên đoạn 0;2π3 .

 Nếu x0;2π32x0;4π3 . Dựa vào đường tròn lượng giác, để phương trình cos2x=m  có đúng hai nghiệm 1<m12  .

Lời giải

Đáp án B

Thể tích của khối tròn xoay thu được khi quay elip có trục lớn AA'=8 , trục nhỏ BB'=6  khi quay quanh trục AA’ là VE=43π.AA'2.BB'22=43π.4.32=48π  (đvtt).

Thể tích khối tròn xoay thu được khi quay đường tròn O;BB'2  quanh trục AA’ cũng chính là thể tích khối cầu tâm O, bán kính R=3 . Thể tích đó là 

VO;3=43πR3=43π.33=36π(đvtt).

Vậy thể tích khối tròn xoay cần tính là V=VEVO;3=48π36π=12π  (đvtt)

Câu 3

Tổng S=1+11+111+...+11...111n  so 1 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Số hạng chính giữa trong khai triển 3x+2y4 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay