Câu hỏi:

24/08/2020 4,311

Cho hình bình hành ABCD, điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chọn khẳng định sai.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Có ABCD là hình bình hành nên: AD // BC, AB // DC

ADE^=FBE^ (cặp góc so le trong)

ABE^=EDG^ (cặp góc so le trong)

Xét tam giác BFE và tam giác DAE có:

ADE^=FBE^ (cmt)

AED^=FEB^ (đối đỉnh)

=> ΔBFE ~ ΔDAE (g - g) nên A đúng, C sai.

Xét tam giác DGE và tam giác BAE có:

ABE^=EDG^ (cmt)

AEB^=GED^ (đối đỉnh)

=> ΔDGE ~ ΔBAE (g - g) hay ΔDEG ~ ΔBEA nên B, D đúng

Đáp án: C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét tam giác ABD và BDC có:

BAD^=DBC^=60

ABD^=BDC^ (so le trong)

ΔABD đng dng ΔBDC g, gABBD=BDDCBD2=AB.DC=4.9=36BD=6cm

Đáp án: D

Lời giải

Ta có: A^=F^, B^ = E^ thì ΔABC ~ ΔFED (g - g)

Đáp án: A

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP