Câu hỏi:

03/02/2021 2,524

Cho hình chóp S.ABCD có đáy là hình vuông, tâm O, SA vuông góc với đáy, SA = a. Góc giữa đường thẳng SD và mặt phẳng (SAC) bằng 30°. Tính khoảng cách từ điểm D đến mặt phẳng (SBM) với M là trung điểm CD.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Ta có DBACDBSADBSACDBSO tại O

 Hình chiếu vuông góc của SD lên mặt phẳng (SAC) là SO

Do đó góc giữa SD và (SAC) là DSO^=30°

+ Đặt DO = x  DB = 2x; AO = BO = CO = x

Ta có: ΔSAB=ΔSADc.g.c nên SB = SD  Tam giác SBD cân tại S, mà có O là trung điểm BC  DSB^=2DSO^=60° 

Tam giác SBD đều  SO = 2x 32= x3

Theo Py-ta-go trong tam giác SOA vuông tại A, ta có: SO2=AO2+SA2

hay 3x2 =  x2+a2x2= a2/ 2

x =a2

+ Gọi N là trung điểm của AB DN // BM

Suy ra d(D; (SBM)) = d(N;(SBM)) = 1/2 d(A; (SBM))

+ Kẻ AI BM tại I và AH  SI tại H. Từ đó ta chứng minh được AH  (SBM)

  d(A; (SBM)) = AH  d(D; (SBM)) = 1/2 AH.

+ Tính AH

BM = BC2 +CM2=  a52

Trong (ABCD): SABM=SABCD2SADM=a22.a24=a22

SABM=12AI. BM  AI = 2a5

Áp dụng hệ thức về cạnh, đường cao trong tam giác vuông SAI có:

   1AH2=1AI2+1SA2AH = 2a3

Vậy d(D; (SBM)) = 1/2. AH = a3

Đáp án A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án A: đúng

Đáp án B: Sai, do phát biểu này thiếu yếu tố cắt nhau.

Đáp án C: Sai, vì mặt phẳng đó chưa chắc đã tồn tại.

Đáp án D: Sai, do phát biểu này thiếu yếu tố vuông góc.

ĐÁP ÁN A

Lời giải

Ta có: AA'AD tại A; AA'A'C' tại A’

Do đó đoạn vuông góc chung của hai đường thẳng chéo nhau AD và A’C’ là AA’.

Đáp án A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP