Câu hỏi:

04/02/2021 8,623

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, mặt bên (SBC) vuông góc với đáy (ABC). Gọi M, N, P lần lượt là trung điểm của AB, SA, AC. Tính khoảng cách giữa hai mặt phẳng (MNP) và (SBC).

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Gọi H là trung điểm của BC, AH  MP = K

Ta có M, N, P lần lượt là trung điểm của AB, SA, AC MN // SB; NP //SC; MP //BC

 MN // (SBC); NP // (SBC), mà MN, NP (MNP)

 (SBC) // (MNP)

Mà K  MP (MNP)

d((MNP); (SBC)) = d(K; (SBC))

+ Tam giác ABC đều có H là trung điểm của BC  AH  BC

Theo giả thiết ta có (ABC)  (SBC)

Do đó AH  (SBC) mà K  AH  KH  (SBC)  d(K; (SBC)) = KH

d((MNP); (SBC)) = d(K; (SBC)) = KH

+ Tính KH

Ta có MH // = 1/2 AC  MH // = AP  MHPA là hình bình hành

 K là trung điểm của AH   KH = 1/2AH

Tam giác ABC đều cạnh a  AH = a34.

Do đó KH = a34.

Vậy d((MNP); (SBC)) = KH = a34.

Đáp án B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem đáp án » 08/09/2020 21,275

Câu 2:

Cho khối lập phương ABCDA’B’C’D’. Đoạn vuông góc chung của hai đường thẳng chéo nhau AD và A’C’ là :

Xem đáp án » 08/09/2020 14,472

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, BD = 2a; tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy, SC = a3. Tính khoảng cách từ điểm B đến mặt phẳng (SAD).

Xem đáp án » 03/02/2021 13,239

Câu 4:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy (ABC). Gọi M là trung điểm của AB; mặt phẳng qua SM và song song với BC cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60°. Khoảng cách giữa hai đường thẳng AB và SN là:

Xem đáp án » 08/09/2020 10,712

Câu 5:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 08/09/2020 8,167

Câu 6:

Một hình lập phương được tạo thành khi xếp miếng bìa carton như hình vẽ bên.

Tính khoảng cách từ điểm O đến đường thẳng AB sau khi xếp, biết rằng độ dài đoạn thẳng AB bằng 2a.

Xem đáp án » 03/02/2021 8,026
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua