Câu hỏi:

04/02/2021 1,863

Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân, AB = AC = a, BAC^=120°. Mặt phẳng (AB’C’) tạo với đáy góc 60°. Tính khoảng cách từ đường thẳng BC đến mặt phẳng (AB’C’) theo a.

Đáp án chính xác
Câu hỏi trong đề:   15 câu Khoảng cách có đáp án !!

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

+ Gọi M là trung điểm của B’C’

Vì ABB'= ACC' ( c.g.c) nên AB'= AC'

Suy ra: tam giác AB’C’ cân tại A AMB’C’

Tam giác A’B’C’ cân tại A’( vì A'B' = A'C') A’M B’C’

Mà (AB’C’)  (A’B’C’) = B’C’

Do đó góc giữa hai mặt phẳng (AB’C’) và (A’B’C’) là góc giữa 2 đường thẳng AM và A’M và chính là góc AMA’ AMA'^=60° 

Tam  giác A'B'C' cân tại A' có A'M là đường trung tuyến nên đồng thời là đường cao, đường phân giác.

MA'C'^ = 12B'A'C'^= 600; A'M = A'C'. cosMA'C'^=  a2

 AA’ = A’M. tan60°a32

+ Ta có BC // (AB’C’) d(BC; (AB’C’)) = d(B; (AB’C’))

+  Vì ABB'A' là hình chữ nhật có hai đường chéo A'B và AB' cắt nhau tại trung điểm mỗi đường:

Suy ra: d(B; (AB’C’)) = d(A’; (AB’C’))

Do đó: d(BC; (AB’C’)) = d(A’; (AB’C’))

+ Ta chứng minh được (AA’M) (AB’C’), trong mặt phẳng (AA’M), dựng A’H  AM tại H

A’H (AB’C’) d(A’; (AB’C’)) = A’H  d(BC; (AB’C’)) = A’H

+ Tính A’H

Ta có: 1A'H2=1AA'2+1A'M2 =  43a2+ 4a2=163a2A’H = a34

Vậy d(BC; (AB’C’)) = a34.

Đáp án B

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong các mệnh đề sau, mệnh đề nào đúng?

Xem đáp án » 08/09/2020 19,805

Câu 2:

Cho khối lập phương ABCDA’B’C’D’. Đoạn vuông góc chung của hai đường thẳng chéo nhau AD và A’C’ là :

Xem đáp án » 08/09/2020 13,610

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, BD = 2a; tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy, SC = a3. Tính khoảng cách từ điểm B đến mặt phẳng (SAD).

Xem đáp án » 03/02/2021 12,464

Câu 4:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy (ABC). Gọi M là trung điểm của AB; mặt phẳng qua SM và song song với BC cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng 60°. Khoảng cách giữa hai đường thẳng AB và SN là:

Xem đáp án » 08/09/2020 9,664

Câu 5:

Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, mặt bên (SBC) vuông góc với đáy (ABC). Gọi M, N, P lần lượt là trung điểm của AB, SA, AC. Tính khoảng cách giữa hai mặt phẳng (MNP) và (SBC).

Xem đáp án » 04/02/2021 8,136

Câu 6:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 08/09/2020 7,427

Câu 7:

Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và BAD^=BAA'^=DAA'^=60°. Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).

Xem đáp án » 04/02/2021 7,278