Câu hỏi:
04/02/2021 1,685Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân, AB = AC = a, . Mặt phẳng (AB’C’) tạo với đáy góc . Tính khoảng cách từ đường thẳng BC đến mặt phẳng (AB’C’) theo a.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
+ Gọi M là trung điểm của B’C’
Vì nên AB'= AC'
Suy ra: tam giác AB’C’ cân tại A AMB’C’
Tam giác A’B’C’ cân tại A’( vì A'B' = A'C') A’M B’C’
Mà (AB’C’) (A’B’C’) = B’C’
Do đó góc giữa hai mặt phẳng (AB’C’) và (A’B’C’) là góc giữa 2 đường thẳng AM và A’M và chính là góc AMA’
Tam giác A'B'C' cân tại A' có A'M là đường trung tuyến nên đồng thời là đường cao, đường phân giác.
AA’ = A’M. tan=
+ Ta có BC // (AB’C’) d(BC; (AB’C’)) = d(B; (AB’C’))
+ Vì ABB'A' là hình chữ nhật có hai đường chéo A'B và AB' cắt nhau tại trung điểm mỗi đường:
Suy ra: d(B; (AB’C’)) = d(A’; (AB’C’))
Do đó: d(BC; (AB’C’)) = d(A’; (AB’C’))
+ Ta chứng minh được (AA’M) (AB’C’), trong mặt phẳng (AA’M), dựng A’H AM tại H
A’H (AB’C’) d(A’; (AB’C’)) = A’H d(BC; (AB’C’)) = A’H
+ Tính A’H
Ta có: A’H =
Vậy d(BC; (AB’C’)) = .
Đáp án B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho khối lập phương ABCDA’B’C’D’. Đoạn vuông góc chung của hai đường thẳng chéo nhau AD và A’C’ là :
Câu 3:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, BD = 2a; tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với đáy, SC = a. Tính khoảng cách từ điểm B đến mặt phẳng (SAD).
Câu 4:
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a; hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy (ABC). Gọi M là trung điểm của AB; mặt phẳng qua SM và song song với BC cắt AC tại N. Biết góc giữa hai mặt phẳng (SBC) và (ABC) bằng . Khoảng cách giữa hai đường thẳng AB và SN là:
Câu 6:
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, mặt bên (SBC) vuông góc với đáy (ABC). Gọi M, N, P lần lượt là trung điểm của AB, SA, AC. Tính khoảng cách giữa hai mặt phẳng (MNP) và (SBC).
Câu 7:
Cho hình hộp thoi ABCD.A’B’C’D’ có các cạnh đều bằng a và . Tính khoảng cách giữa hai mặt phẳng đáy (ABCD) và (A’B’C’D’).
về câu hỏi!