Câu hỏi:
12/07/2024 11,186Cho đường tròn (O; R) và đường thẳng d không có điểm chung sao cho khoảng cách từ O đến d không quá 2R. Qua diêm M trên d, vẽ các tiếp tuyến MA, MB tới (O) với A, B là các tiếp điểm. Gọi H là hình chiếu vuông góc của O trên d. Vẽ Dây AB cắt OH ở K và cắt OM tại I. Tia OM cắt (O) tại E.
a, Chứng minh OMAB và OI.OM =
b, Chứng minh OK.OH = OI.OM
c, Tìm vị trí của M trên d để OAEB là hình thoi
d, Khi M di chuyên trên d, chứng minh đường thẳng AB luôn đi qua một điểm cố định
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
a, Theo tính chất của hai tiếp tuyến cắt nhau chứng minh được OM là đường trung trực của AB, tức OM vuông góc AB. Áp đụng hệ thức lượng trong tam giác vuông OAM chứng minh được : OI. OM =
b, Chứng minh được: ∆OKI:∆OMH(g.g) => OK.OH = OI.OM
c, Để OAEB là hình thoi thì OA = EB. Khi đó, tam giác OAK đều, tức là . Sử dụng tỉ số lượng giác của góc , tính được OM=2OA=2R, tức là M cách O một khoảng 2R
d, Kết hợp ý a) và b) => OK.OH = => OK =
Mà độ dài OH không đổi nên độ dài OK không đổi
Do đó, điểm K là điểm cố định mà AB luôn đi qua khi M thay đổi
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC cân tại A, đường cao AH = 2cm, cạnh BC = 8 cm. Đường vuông góc vói AC tại c cắt đường thẳng AH ở D
a, Chứng minh các điểm B, C cùng thuộc đường tròn đường kính AD
b, Tính độ dài đoạn thẳng AD
Câu 2:
Cho hai đường tròn (O; 13 cm), (O’; 5 cm) và OO' = 8 cm. Vị trí tương đối của hai đường tròn đó là:
Câu 3:
Cho đường tròn (O; 5 cm) có dây CD không đi qua O. Gọi H là hình chiếu vuông góc của O trên CD. Biết OH = 3 cm, khi đó độ dài dây CD bằng:
Câu 4:
Cho MNP là tam giác đều cạnh dài 9 cm. Bán kính đường tròn ngoại tiếp tam giác MNP bằng:
Câu 6:
Cho đường tròn (O; 2 cm) và điểm A năm ngoài (O) sao cho OA = 4 cm. Từ A vẽ hai tiếp tuyến AB, AC tới (O) trong đó B, C là các tiếp điểm. Khi đó, chu vi tam giác ABC bằng:
về câu hỏi!