Cho nửa đường tròn (O) đường kính AB. Lấy M là điểm tuỳ ý trên nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB (HAB). Trên cùng nửa mặt phang bờ AB chứa nửa đường tròn (O) vẽ hai nửa đường tròn tâm , đường kính AH và tâm , đường kính BH. Đoạn MA và MB cắt hai nửa đường tròn () và () lần lượt tại P và Q. Chứng minh:
a, MH = PQ
b, Các tam giác MPQ và MBA đồng dạng
c, PQ là tiếp tuyến chung của hai đường tròn () và ()
Câu hỏi trong đề: Chương 3 - Bài 3: Góc nội tiếp !!
Quảng cáo
Trả lời:
a, MPHQ là hình chữ nhật => MH = PQ
b, Sử dụng hệ thức lượng trong tam giác vuông chứng minh được MP.MA = MQ.MB => ∆MPQ: ∆MBA
c, => => PQ là tiếp tuyến của
Tương tự PQ cũng là tiếp tuyến ()
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a, Ta có (góc nội tiếp)
b, Ta có ∆ABH:∆AMC(g.g)
=>
=>
c,
=> MNBC là hình thang
=> BC//MN => sđ = sđ
=> nên BCMN là hình thang cân
Lời giải
Do sđ = sđ = sđ
=>
=> SA = SN => SM = SC
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.