Câu hỏi:

13/07/2024 3,764

Cho tam giác ABC vuông tại A. Về phía ngoài tam giác ABC, vẽ hai tam giác vuông cân ADB (DA = DB) và ACE (EA = EC). Gọi M là trung điểm của BC, I là giao điểm của DM với AB, và K là giao điểm của EM với AC. Chứng minh:

a) Ba điểm D, A, E thẳng hàng.

b) Tứ giác IAKM là hình chữ nhật.

c) Tam giác DME là tam giác vuông cân.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Chứng minh DEA^=1800

b) Chứng minh

AIM^=AKM^=IAK^=900

c) Chứng minh DDME có EDM^=DEM^=450

Þ DDME vuông cân ở M.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

) HS tự chứng minh AMBQ là hình chữ nhật (ahi đường chéo cắt nhau tại trung điểm mỗi đường và bằng nhau)

b) Sử dụng tính chất trực tâm tam giác.

c) Sử dụng tính chất đường trung tuyến ứng với cạnh huyền của tam giác vuông để chứng minh

PI=PQ=12AB.

Lời giải

a) FHA^=HAK^=AKF^=900

Þ AHFK là hình chữ nhật.

b) Gọi là giao điểm của AC và BD. Chứng minh OE là đường trung bình của DACF

Þ AF//OE

Þ AF/BD

c) Gọi I là giao điểm của AF và HK.

Chứng minh

H1^=A^1(H1^=A2^=B1^=A1^)KH//AC mà KH đi qua trung điểm I của AF Þ KH đi qua trung điểm của FC.

Mà E là trung điểm của FC Þ K, H, E thẳng hàng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP