Câu hỏi:

12/07/2024 2,628

Cho đường tròn tâm O đường kính AB và một điểm C chạy trên một nửa đường tròn. Vẽ một đường tròn (I) tiếp xúc với đường tròn (O) tại C và tiếp xúc với đường kính AB tại D, đường tròn này cắt CA và CB tại các điểm thứ hai là M và N. Chứng minh rằng:

a) Ba điểm M, I, N thẳng hàng

b) IDMN

c) Đường thẳng CD đi qua điểm cố định

d) Nêu cách dựng đường tròn (I) nói trên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

=> K là điểm chính giữa của cung.

Do đó K cố định. Vậy CD luôn đi qua điểm cố định K

d) Để dựng đường tròn (I), ta thực hiện:

- Dựng OK vuông góc với AB, với K thuộc nửa đường tròn không chứa điểm C.

- Nối CK cắt AB tại D.

- Dựng đường thẳng qua D vuông góc với AB cắt CD tại I.

- Dựng đường tròn (I; ID) đây chính là đường tròn cần dựng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP