Câu hỏi:

08/09/2022 2,693

Từ các số  có thể lập được bao nhiêu số tự nhiên,mỗi số có 6 chữ số đồng thời thỏa điều kiện :sáu số của mỗi số là khác nhau và trong mỗi số đó tổng của 3 chữ số đầu nhỏ hơn tổng của 3 số sau một đơn vị.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn đáp án C.

Cách 1: Gọi x=a1a2...a6¯, ai1,2,3,4,5,6 là số cần lập

Theo bài ra ta có: a1+a2+a3+1=a4+a5+a6 (1)

a1,a2,a3,a4,a5,a61,2,3,4,5,6 và đôi một khác nhau nên

 a1+a2+a3+a4+a5+a6=1+2+3+4+5+6=21(2)

Từ (1), (2) suy ra: a1+a2+a3=10

Phương trình này có các bộ nghiệm là: a1,a2,a3=1,3,6;1,4,5;2,3,5

Với mỗi bộ ta có: ( 3.2.1). (3.2.1)  = 36 số.

Vậy có tất cả: 3.36=108 số cần lập.

Cách 2: Gọi x=abcdef¯ là số cần lập

Ta có:a+b+c+d+e+f=1+2+3+4+5+6=21a+b+c=d+e+f+1

a+b+c=11. Do a,b,c1,2,3,4,5,6

Suy ra ta có các cặp sau: a1,a2,a3=1,3,6;1,4,5;2,3,5

Với mỗi bộ như vậy ta có 3.2.1= 6 cách chọn a,b,c và 3.2.1= 6 cách chọn

Do đó có: 3. 6.6 = 108 số thỏa yêu cầu bài toán.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án cần chọn là: C

Cách 1: Có tất cả 5 cặp ghế ngồi đối diện

Cặp 1: Học sinh đầu tiên, giả sử đó là học sinh lớp A có 10 cách chọn ghế.

Có 5 cách chọn ra một học sinh lớp B ngồi vào ghế đối diện.

Cặp  2: Có 8 cách chọn ra một học sinh lớp A ( hoặc lớp B) vào ghế tiếp theo.

Có 4 cách chọn ra học sinh lớp B ( hoặc lớp A) vào ghế đối diện.

Cặp 3: Có 6 cách chọn ra học sinh lớp A ( hoặc lớp B)

Có 3 cách chọn học sinh lớp B ( hoặc lớp A) vào ghế đối diện.

Cặp 4: Có 4 cách chọn học sinh lớp A ( hoặc lớp B) vào ghế tiếp.

Có 2 cách chọn học sinh lớp B ( hoặc lớp A) vào ghế đối diện.

Cặp 5: Có 2 cách chọn học sinh lớp A ( hoặc lớp B)   vào ghế kế tiếp.

Có 1 cách chọn học sinh lớp B ( hoặc lớp A) vào ghế đối diện.

Theo quy tắc nhân thì có 10.5.8.4.6.3.4.2.2.1=460800 cách.

Cách 2:

Vì 2 học sinh ngồi đối diện nhau thì khác lớp nên mỗi cặp ghế đối diện nhau sẽ được xếp bởi 1 học sinh lớp A và 1 học sinh lớp B.

Số cách xếp 5 học sinh lớp A vào 5 cặp ghế là 5! cách. Số cách xếp 5 học sinh lớp B vào 5 cặp ghế là 5! cách. Số cách xếp chỗ ở mỗi cặp ghế là 2 cách.

Theo quy tắc nhân thì có 5!2.25=460800  cách.

Lời giải

Chọn đáp án A.

Đặt X là các số tự nhiên thỏa yêu cầu bài toán.

A={ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}

Với mỗi số thuộc A có m chữ số m2008 thì ta có thể bổ sung thêm 2011-m số 0 vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng a1a2...a2011¯; ai0,1,2,3,...,9

A0={aA|mà trong a không có chữ số 9}

 A1={aA|mà trong a có đúng 1 chữ số 9}

Ta thấy tập A có 1+92011-19 phần tử

Tính số phần tử của A0

Với xA0x=a1...a2011¯; ai0,1,2,...8 i=1,2010¯ và a2011=9-r vi r1;9, ri=12010ai.

Từ đó ta suy ra A0 có 92010 phần tử

Tính số phần tử của A1

Để lập số của thuộc tập A1 ta thực hiện liên tiếp hai bước sau

Bước 1: Lập một dãy gồm 2010 chữ số thuộc tập 0,1,2,...,8 và tổng các chữ số chia hết cho 9. Số các dãy là 92009

Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9

Do đó A1 có 2010.92009 phần tử.

Vậy số các số cần lập là: 

1+92011-19-92010-2010.92009=92011-2019.92010+89

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP