Câu hỏi:

06/05/2021 945 Lưu

Cho hình thang ABCD (AB // CD) có diện tích 36cm2, AB = 4cm, CD = 8cm. Gọi O là giao điểm của hai đường chéo. Tính diện tích tam giác COD

A. 8cm2

B. 6cm2

C. 16cm2

D. 32cm2

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án C

Kẻ AH ⊥ DC; OK ⊥ DC tại H, K suy ra AH // OK

Chiều cao của hình thang: AH =2SABCDAB+CD=2.364+8=6 (cm)

Vì AB // CD (do ABCD là hình thang) nên theo định lý Ta-lét ta có

OCOA=CDAB=84=2OCOA+OC=22+1OCAC=23

Vì AH // OK (cmt) nên theo định lý Ta-lét cho tam giác AHC ta có:

OKAH=OCAC=23OK = 23AHOK = 23.6 = 4(cm)

Do đó SCOD = 12OK.DC = 12.4.8 = 16cm2

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án C

Áp dụng định lý Ta-lét:

Với EF // CD ta có AFAD=AEAC

Với DE // BC ta có AEAC=ADAB

Suy ra AFAD=ADAB, tức là AF.AB = AD2

Vậy 9.16 = AD2AD2 = 144AD = 12

Lời giải

Đáp án B

Vì các tam giác AMC và BMD đều nên BMD^ =MAC^= 60 (vì hai góc ở vị trí đồng vị) => MD // AC

Vì MD // AC nên theo hệ quả định lý Talet cho hai tam giác DEM và AEC ta có MEEC=MDAC=ba

Suy ra MEEC=baMEME+EC=bb+a

MEa=bb+aME=abb+a

Tương tự MF=baa+b

Vậy ME=MF=abb+a

Câu 3

A. x=25, y=10

B. x=105, y=9

C. x=65, y=10

D. x=55, y=10

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP