Cho hình bình hành ABCD. Trên đường chéo AC lấy điểm E sao cho AC = 3AE. Qua E vẽ đường thẳng song song với CD, cắt AD và BC theo thứ tự ở M và N. Cho các khẳng định sau
(I) ΔAME ~ ΔADC, tỉ số đồng dạng
(II) ΔCBA ~ ΔADC, tỉ số đồng dạng bằng
(III) ΔCNE ~ ΔADC, tỉ số đồng dạng
Chọn câu đúng.
A. (I) đúng, (II) và (III) sai
B. (I) và (II) đúng, (III) sai
C. Cả (I), (II), (III) đều đúng
D. Cả (I), (II), (III) đều sai
Quảng cáo
Trả lời:

Đáp án C
Vì ABCD là hình bình hành nên ME // DE và EN // AB.
+ ME // DC nên ΔAME ~ ΔADC, tỉ số đồng dạng
+ Vì ABCD là hình bình hành nên góc B = D; AD = BC; AB = DC
=> ΔCBA ~ ΔADC
ΔCBA ~ ΔADC, tỉ số đồng dạng bằng 1
+ EN // AB nên ΔCNE ~ ΔADC, do đó ΔCNE ~ ΔADC, tỉ số đồng dạng
Vậy cả (I), (II), (III) đều đúng
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. 10cm; 15cm
B. 12cm; 16cm
C. 20cm; 10cm
D. 10cm; 20cm
Lời giải
Đáp án D
Ta có: MD // AC nên ΔDBM ~ ΔABC. Suy ra
Do đó
Chu vi ΔDBM bằng
Ta có ME // AB nên ΔEMC ~ ΔABC. Suy ra , do đó
Chu vi ΔEMC bằng cm
Vậy chu vi ΔDBM và chu vi ΔEMC lần lượt là 10cm; 20cm
Lời giải
Đáp án A
Ta có: MD // AC nên ΔDBM ~ ΔABC. Suy ra
Do đó (1)
Ta có ME // AB nên ΔEMC ~ ΔABC. Suy ra , do đó (2)
Từ (1) và (2) suy ra:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.