Câu hỏi:

07/05/2021 1,263

Cho hình bình hành ABCD. Trên đường chéo AC lấy điểm E sao cho AC = 3AE. Qua E vẽ đường thẳng song song với CD, cắt AD và BC theo thứ tự ở M và N. Cho các khẳng định sau

(I) ΔAME ~ ΔADC, tỉ số đồng dạng k1 =13

(II) ΔCBA ~ ΔADC, tỉ số đồng dạng bằng k2 = 1

(III) ΔCNE ~ ΔADC, tỉ số đồng dạng k3 =23

Số khẳng định đúng là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án C

Vì ABCD là hình bình hành nên ME // DE và EN // AB.

+ ME // DC nên ΔAME ~ ΔADC, tỉ số đồng dạng AEAC=13

+ Vì ABCD là hình bình hành nên góc B = D; AD = BC; AB = DC

=> ΔCBA ~ ΔADC

ΔCBA ~ ΔADC, tỉ số đồng dạng bằng 1

+ EN // AB nên ΔCNE ~ ΔADC, do đó ΔCNE ~ ΔADC, tỉ số đồng dạng CEAC=23

Vậy cả (I), (II), (III) đều đúng nên có 3 khẳng định đúng

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án D

Ta có: MD // AC nên ΔDBM ~ ΔABC. Suy ra DBAB=BMBC=DMAC=DB+BM+DMAB+BC+CA

Do đó 13=PBDMPABC

Chu vi ΔDBM bằng 30.13 = 10cm

Ta có ME // AB nên ΔEMC ~ ΔABC. Suy ra EMAB=MCBC=ECAC=EM+MC+ECAB+BC+AC, do đó 23=PEMCPABC

Chu vi ΔEMC bằng 30.23 = 20 cm

Vậy chu vi ΔDBM và chu vi ΔEMC lần lượt là 10cm; 20cm

Lời giải

Đáp án C

Vì ABCD là hình bình hành nên ME // DE và EN // AB.

+ ME // DC nên ΔAME ~ ΔADC, tỉ số đồng dạng AEAC=13

+ Vì ABCD là hình bình hành nên góc B = D; AD = BC; AB = DC

=> ΔCBA ~ ΔADC

ΔCBA ~ ΔADC, tỉ số đồng dạng bằng 1

+ EN // AB nên ΔCNE ~ ΔADC, do đó ΔCNE ~ ΔADC, tỉ số đồng dạng CEAC=23

Vậy cả (I), (II), (III) đều đúng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP