Câu hỏi:
26/05/2021 3,979Phương trình đường tròn (C) đi qua A (3; 3) và tiếp xúc với đường thẳng (d): 2x + y – 3 = 0 tại điểm B (1; 1) là
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Giả sử đường tròn có tâm I (a; b)
Vì đường tròn tiếp xúc với đường thẳng (d): 2x + y – 3 = 0 tại B (1; 1) nên ta có
Mà
nên ta có
1(a − 1) − 2(b − 1) = 0 ⇔ a − 2b + 1 = 0 (1)
Vì đường tròn qua A (3; 3) nên ta có R = IA = IB.
IA = IB ⇔ (a − 3)2 + (b − 3)2 = (a − 1)2 + (b − 1)2
⇔ −4a − 4b + 16 = 0
⇔ a + b = 4 (2)
Từ (1) và (2) ta có hệ
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC cân tại đỉnh A (6; 6), đường thẳng đi qua trung điểm của các cạnh AB và AC có phương trình x + y – 4 = 0. Có bao nhiêu cặp điểm B, C thỏa mãn yêu cầu bài toán, biết điểm E (1; −3) nằm trên đường cao đi qua đỉnh C của tam giác đã cho.
Câu 2:
Một miếng giấy hình tam giác ABC vuông tại A có diện tích S, gọi I là trung điểm BC và O là trung điểm của AI. Cắt miếng giấy theo một đường thẳng qua O, đường thẳng này đi qua M, N lần lượt trên các cạnh AB, AC. Khi đó diện tích miếng giấy chứa điểmA có diện tích thuộc đoạn
Câu 3:
Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn (C):x2 + y2 + 2x − 8y – 8 = 0. Phương trình đường thẳng Δ nào dưới đây song song với đường thẳng 3x + 4y – 2 = 0 và cắt đường tròn (C) theo dây cung có độ
Câu 4:
Cho đường thẳng (Δ): 3x − 2y + 1 = 0. Viết PTĐT (d) đi qua điểm M (1; 2) và tạo với (Δ) một góc 450
Câu 5:
Cho (E) có hai tiêu điểm và điểm thuộc (E). Gọi N là điểm đối xứng với M qua gốc tọa độ O. Khi đó:
Câu 6:
Tìm tất cả các giá trị của tham số m để khoảng cách từ điểm A (−1; 2) đến đường thẳng Δ: mx + y – m + 4 = 0 bằng
về câu hỏi!