Câu hỏi:

27/05/2021 2,655

Trong mặt phẳng với hệ trục Oxy, cho hình vuông ABCD có tâm là điểm I.  Gọi G (1; −2) và K (3; 1) lần lượt là trọng tâm các tam giác ACD và ABI. Biết A (a; b) với b > 0. Khi đó a2 + b2 bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi M, N và P lần lượt là các trung điểm của AB, CD và BI. Ta có

Đồng thời:

Do đó tam giác AKG vuông cân tại K nên:

b

bnana

cẹc cút

Ảnh đính kèm

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

M trên trục Oy ⇒ M (0; y).

MA = (1; −1 − y); MB = (3; 2 − y)

MA2 + MB2 = 10 − 2y + 2y2

Giá trị nhỏ nhất của (MA2 + MB2) bằng 192

Dấu bằng xảy ra khi y = 12. Khi đó M0;12

Đáp án cần chọn là: C

Lời giải

Kẻ đường kính AD của đường tròn (I) khi đó ta có BHCD là hình bình hành

⇒ M là trung điểm của cạnh HD.

Xét tam giác AHD có IM là đường trung bình

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP