Câu hỏi:

28/05/2021 5,138

Cho tam giác ABC có A45;75 và hai trong ba đường phân giác trong có phương trình lần lượt là x − 2y – 1 = 0, x + 3y – 1 = 0. Viết phương trình đường thẳng chứa cạnh BC.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Dễ thấy điểm Â45;75 không thuộc hai đường phân giác x − 2y – 1 = 0 và x + 3y – 1 = 0.

Gọi CF: x − 2y – 1 = 0, BE: x + 3y – 1 = 0 lần lượt là phương trình đường phân giác xuất phát từ đỉnh C, B (như hình vẽ trên).

Gọi d là đường thẳng qua A45;75 và vuông góc với BE thì d có VTPT là nd = (3; −1) nên có phương trình

Tọa độ điểm M = d ∩ BE thỏa mãn hệ

Suy ra tọa độ điểm đối xứng với A45;75 qua M25;15 là A′ (0; −1) thì 

A′ ∈ BC (1).

Gọi d′ là đường thẳng qua A45;75 và vuông góc với CF thì d′ có VTPT là nd'= (2; 1)  nên có phương trình

⇔ 2x + y – 3 = 0

Tọa độ điểm N = d′ ∩ CF thỏa mãn hệ

Suy ra tọa độ điểm đối xứng với  A45;75 qua N75;15 là A″ (2; −1) thì A″ ∈ BC  (2)

Từ (1) và (2) ta có A'A'' = (2; 0) là một VTCP của BC suy ra VTPT của BC là 

n = (0; 1). Do đó phương trình cạnh BC: 0(x − 0) + 1(y + 1) = 0 ⇔  y + 1 = 0

Đáp án cần chọn là: A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

M trên trục Oy ⇒ M (0; y).

MA = (1; −1 − y); MB = (3; 2 − y)

MA2 + MB2 = 10 − 2y + 2y2

Giá trị nhỏ nhất của (MA2 + MB2) bằng 192

Dấu bằng xảy ra khi y = 12. Khi đó M0;12

Đáp án cần chọn là: C

Lời giải

Kẻ đường kính AD của đường tròn (I) khi đó ta có BHCD là hình bình hành

⇒ M là trung điểm của cạnh HD.

Xét tam giác AHD có IM là đường trung bình

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP