Câu hỏi:

15/01/2021 5,737

Có bao nhiêu số nguyên dương không vượt quá 1000 mà chia hết cho 3 hoặc chia hết cho 5?

Đáp án chính xác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số chia hết cho 3 có dạng 3a ta có 0  < 3a  ≤ 1000  0< a < 333,3 nên có 333 số thỏa mãn.

Số chia hết cho 5 có dạng 5b ta có 0  < 5b  ≤ 1000  0< b 200 nên có 200 số thỏa mãn.

Số chia hết cho cả 3 và 5 có dạng 15c ta có : 0  < 15c  ≤ 1000  0<  c 66,6 nên có 66 số thỏa mãn.

Do đó số các số thỏa mãn đề bài là 333 + 200 – 66 =467.

Chọn D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Có bao nhiêu số tự nhiên có hai chữ số mà các chữ số hàng chục lớn hơn chữ số hàng đơn vị?

Xem đáp án » 15/01/2021 134,877

Câu 2:

Số 253125000 có bao nhiêu ước số tự nhiên?

Xem đáp án » 11/09/2019 130,545

Câu 3:

Từ 10 chữ số 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 có thể lập được bao nhiêu số gồm 6 chữ số khác nhau, sao cho trong các chữ số đó có mặt chữ số 0 và 1.

Xem đáp án » 11/09/2019 102,074

Câu 4:

Một tổ học sinh có 5 nam và 5 nữ xếp thành 1 hàng dọc sao cho không có học sinh cùng giới tính đứng kề nhau. Số cách xếp là:

Xem đáp án » 15/01/2021 98,399

Câu 5:

Một người có 7 chiếc áo sơ mi, trong đó có 3 chiếc áo sơ mi trắng; có 5 cái cà vạt trong đó có 2 cà vạt màu vàng. Hỏi người đó có bao nhiêu cách chọn một chiếc áo và một cà vạt thỏa mãn điều kiện: nếu chọn áo trắng thì không chọn cà vạt màu vàng

Xem đáp án » 14/12/2021 94,447

Câu 6:

Một chồng sách gồm 4 quyển sách Toán, 3 quyển sách Vật lý, 5 quyển sách Hóa học. Hỏi có bao nhiêu cách xếp các quyển sách trên thành một hàng ngang sao cho 4 quyển sách Toán đứng cạnh nhau, 3 quyển Vật lý đứng cạnh nhau?

Xem đáp án » 11/09/2019 54,944

Câu 7:

Cho các chữ số: 1, 2, 3, 4, 5, 6, 7, 8, 9. Từ các chữ số trên có thể lập được bao nhiêu số có 4 chữ số đôi một khác nhau thỏa mãn số đó chia hết cho 2 và chữ số 4, 5 phải luôn đứng cạnh nhau?

Xem đáp án » 11/09/2019 47,074
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua