100 câu trắc nghiệm Tổ hợp - Xác suất nâng cao (P1)

  • 15980 lượt thi

  • 25 câu hỏi

  • 25 phút


Danh sách câu hỏi

Câu 1:

Hỏi có bao nhiêu đa thức bậc ba  P(x) =ax3+bx2+cx+d mà  các hệ số a, b, c, d thuộc tập {-3,-2,0,2,3}. Biết rằng: các hệ số tùy ý.

Xem đáp án

Khi các hệ số tùy ý; ta cần thực hiện các bước sau:

Chọn hệ số a: có 4 cách chọn hệ số a vì a≠0.

Chọn hệ số b: có 5 cách chọn hệ số b.

Chọn hệ số c: có 5 cách chọn hệ số c

Chọn hệ số d: có 5 cách chọn hệ số d.

Theo quy tắc nhân có: 4.5.5.5=500 đa thức.

Chọn C.


Câu 2:

Hỏi có bao nhiêu đa thức bậc ba  P(x) =ax3+bx2+cx+d mà  các hệ số a, b, c, d thuộc tập {-3,-2,0,2,3}. Biết rằng các hệ số đều khác nhau.

Xem đáp án

Khi các hệ số khác nhau:

- Có 4 cách chọn hệ số a (a≠0).

- Khi đã chọn a, có 4 cách chọn b.

- Khi đã chọn a và b, có 3 cách chọn c.

- Khi đã chọn a, b và c có 2 cách chọn d.

Theo quy tắc nhân ta có. 4.4.3.2=96 đa thức.

Chọn B.


Câu 3:

Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?

Xem đáp án

Gọi số cần tìm có dạng   . Vì    chia hết cho 5 suy ra e =0 hoặc 5.

TH1. Với e=0          

Nếu a=1; thì có 5 cách chọn b; 4 cách chọn c và 3 cách chọn d.

Theo quy tắc nhân có 1.5.4.3=60 số.

Tương tự nếu b=1; c=1 hoặc d=1 ta cũng có 60 số.

Trong trường hợp 1 có tất cả 60.4=240 số cần tìm.

TH2. Với e=5,

Nếu a=1 thì có 5 cách chọn b; 4 cách chọn c và 3 cách chọn c. Theo quy tắc nhân có 1.5.4.3=60 số.

Nếu b= 1 thì có 4 cách chon a( a khác 0); 4 cách chọn c và 3 cách chọn d suy ra có 1.4.4.3=48 số

Tương tự với c=1 hoặc d=1 cũng có 48 số

Trong trường hợp 2 có 60+3.48= 204.

Vậy có tất cả 204+240= 444 số cần tìm.

Chọn A.


Câu 4:

Từ các chữ số 0, 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?

Xem đáp án

Giả sử số đó là  

Trường hợp 1: c=0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.

Trường hợp 2 c=5 . Với a=2  chọn b  có 6 cách nên có 6 số thỏa mãn.

Với a khác 2  chọn a  có 5 cách chọn, và tất nhiên b=2 nên có 5 số thỏa mãn.

Do đó có 12+6+5=23  số thỏa mãn.

Chọn D.


Câu 5:

Một người có 7 chiếc áo sơ mi, trong đó có 3 chiếc áo sơ mi trắng; có 5 cái cà vạt trong đó có 2 cà vạt màu vàng. Hỏi người đó có bao nhiêu cách chọn một chiếc áo và một cà vạt thỏa mãn điều kiện: nếu chọn áo trắng thì không chọn cà vạt mầu vàng

Xem đáp án

Người đó có hai phương án lựa chọn như sau:

Phương án 1: Không chọn áo sơ mi trắng. Có 4 cách chọn áo và 5 cách chọn cà vạt. Khi đó theo quy tắc nhân, sẽ có 4.5 = 20 cách chọn.

Phương án 2: Chọn áo sơ mi trắng. Có 3 cách chọn áo và 3 cách chọn cà vạt. Khi đó theo quy tắc nhân, sẽ có 3.3 = 9 cách chọn.

Vậy theo quy tắc cộng, số cách chọn áo, cà vạt của người đó là : 20 + 9 = 29 cách lựa chọn.

Chọn B.


Bắt đầu thi để xem toàn bộ câu hỏi trong đề

Đánh giá

5

Đánh giá trung bình

100%

0%

0%

0%

0%

Nhận xét

P

4 tháng trước

Phạm Gia Khiêm

Bình luận


Bình luận