Câu hỏi:
11/09/2019 35,724Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp sao cho 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Số cách chọn 2 nam đứng ở đầu và cuối là .
Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là .
Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là:
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là:
Chọn D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ các số 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên Gồm 6 chữ số đôi một khác nhau và hai chữ số 1 và 2 không đứng cạnh nhau.
Câu 2:
Đội thanh niên xung kích có của một trường phổ thông có 12 học sinh, gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này thuộc không quá 2 trong ba lớp trên. Hỏi có bao nhiêu cách chọn như vậy?
Câu 3:
Có một hộp đựng 5 viên bi xanh, 6 viên bi đỏ và 4 viên bi vàng. Có bao nhiêu cách lấy ra 9 viên bi có đủ 3 màu.
Câu 4:
Một nhóm công nhân gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một tổ công tác sao cho phải có 1 tổ trưởng nam, 1 tổ phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách lập tổ công tác?
Câu 5:
Cho tập A={1;2;3;4;5;6;7;8} Từ các chữ số thuộc tập A, lập được bao nhiêu số tự nhiên lẻ gồm 5 chữ số không bắt đầu bởi 123.
Câu 6:
Cho tập A={1;2;3;4;5;6;7;8}. Có bao nhiêu tập con của A chứa số 2 mà không chứa số 3
Câu 7:
Từ các số của tập A={1;2;3;4;5;6;7} lập được bao nhiêu số tự nhiên gồm năm chữ số đôi một khác nhau, đồng thời hai chữ số 2 và 3 luôn đứng cạnh nhau
về câu hỏi!