Câu hỏi:
15/01/2021 8,593Một nhóm sinh viên có 4 nam 2 nữ ngồi vào 9 ghế hàng ngang. Hỏi có bao nhiêu cách xếp sao cho nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có ít nhất 2 ghế?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
· Gọi nhóm I là nhóm ghế của 4 bạn nam, số cách xếp là 4!,
tương tự với 2 bạn nữ là nhóm II với số cách xếp là 2!.
· Rõ ràng khi xếp 6 bạn này vào hàng 9 ghế thì ta còn 3 ghế trống.
Chia 9 hàng ghế này thành 5 phần có thứ tự, trong đó 2 phần bất kì nào dành cho nhóm I và nhóm II thì 3 phần còn lại sẽ là 3 chiếc ghế trống.
*Số cách xếp 2 nhóm vào 9 hàng ghế sao cho nam ngồi liền nhau, nữ ngồi liền nhau là:
Coi nhóm I, nhóm II và 1 ghế trống ở giữa 2 nhóm này là 1 nhóm đại diện, số nhóm đại diện là 2!.
Lúc này 9 ghế hàng ngang thì còn lại 2 ghế trống.
Tương tự chia 9 hàng ghế làm 3 phần với ý tưởng khi nhóm đại diện rơi vào 1 phần nào đó thì 2 phần còn lại sẽ là ghế trống, khi đó số cách xếp nam ngồi liền nhau, nữ ngồi liền nhau và giữa 2 nhóm có đúng 1 ghế trống là:
Vậy số cách xếp cần tìm là:
chọn B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Từ các số 1, 2, 3, 4, 5, 6 lập được bao nhiêu số tự nhiên Gồm 6 chữ số đôi một khác nhau và hai chữ số 1 và 2 không đứng cạnh nhau.
Câu 2:
Đội thanh niên xung kích có của một trường phổ thông có 12 học sinh, gồm 5 học sinh lớp A, 4 học sinh lớp B và 3 học sinh lớp C. Cần chọn 4 học sinh đi làm nhiệm vụ sao cho 4 học sinh này thuộc không quá 2 trong ba lớp trên. Hỏi có bao nhiêu cách chọn như vậy?
Câu 3:
Có một hộp đựng 5 viên bi xanh, 6 viên bi đỏ và 4 viên bi vàng. Có bao nhiêu cách lấy ra 9 viên bi có đủ 3 màu.
Câu 4:
Một nhóm công nhân gồm 15 nam và 5 nữ. Người ta muốn chọn từ nhóm ra 5 người để lập thành một tổ công tác sao cho phải có 1 tổ trưởng nam, 1 tổ phó nam và có ít nhất 1 nữ. Hỏi có bao nhiêu cách lập tổ công tác?
Câu 5:
Cho tập A={1;2;3;4;5;6;7;8} Từ các chữ số thuộc tập A, lập được bao nhiêu số tự nhiên lẻ gồm 5 chữ số không bắt đầu bởi 123.
Câu 6:
Cho tập A={1;2;3;4;5;6;7;8}. Có bao nhiêu tập con của A chứa số 2 mà không chứa số 3
Câu 7:
Từ các số của tập A={1;2;3;4;5;6;7} lập được bao nhiêu số tự nhiên gồm năm chữ số đôi một khác nhau, đồng thời hai chữ số 2 và 3 luôn đứng cạnh nhau
về câu hỏi!