Câu hỏi:
18/09/2019 10,223Trong không gian Oxyz, cho mặt phẳng (P):x+y+z-1=0 và hai điểm A (1;-3;0), B (5;-1;-2). Điểm M (a;b;c) nằm trên (P) và |MA – MB| lớn nhất. Giá trị abc bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Thay tọa độ điểm A và B vào vế trái của phương trình mặt phẳng (P) ta có:
1+ (-3)+0-1=-3<0 và 5+ (-1)+ (-2)-1=1>0
Nên suy ra A và B nằm khác phía so với mặt phẳng (P).
Gọi là điểm đối xứng với B qua (P). Ta có:
|MA – MB| = |MA – MB’| ≤ AB’.
Do đó |MA – MB| lớn nhất là bằng AB' khi và chỉ khi M là giao điểm của đường thẳng AB' với mặt phẳng (P).
Ta có nên đường thẳng AB' có véc-tơ chỉ phương . Phương trình đường thẳng AB' là
Tọa độ điểm M là nghiệm hệ
Như vậy M (6;-1;-4) => abc = 6 (-1).(-4) = 24.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Câu 2:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9 và đường thẳng . Phương trình mặt phẳng (P) đi qua điểm M (4;3;4) song song với đường thẳng ∆ và tiếp xúc với mặt cầu (S) là:
Câu 3:
Trong không gian Oxyz, cho tam giác ABC với A (3;0;0), B (0;6;0), C (0;0;6). Phương trình nào dưới đây là phương trình đường thẳng đi qua trực tâm của tam giác ABC và vuông góc với mặt phẳng (ABC).
Câu 4:
Trong không gian Oxyz cho mặt cầu (S): (x - 1)² + (y - 2)² + (z - 3)² = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M (a; b; c) là điểm trên mặt cầu sao cho khoảng cách từ M đến (P) lớn nhất. Khi đó:
Câu 5:
Trong không gian Oxyz, cho mặt cầu (S): (x -1)²+ (y + 2)² + (z - 3)² = 27. Gọi (α) là mặt phẳng đi qua hai điểm A (0; 0; -4), B (2; 0; 0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là là đường tròn (C) có thể tích lớn nhất. Biết rằng (α): ax + by - z + c = 0, khi đó a - b + c bằng:
Câu 6:
Trong không gian Oxyz cho điểm M (1;3;-2). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x'Ox, y'Oy, z'Oz lần lượt tại ba điểm phân biệt A, B, C sao cho OA = OB = OC ≠ 0.
Câu 7:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I (1;0;-1) và cắt mặt phẳng (P): 2x+y-2z-16=0 theo giao tuyến là một đường tròn có bán kính bằng 3. Phương trình của mặt cầu (S) là:
về câu hỏi!