Câu hỏi:
23/04/2022 327Cho hình chóp \[S.ABCD\] có đáy là hình vuông tâm O, cạnh a, SO vuông góc với mặt phẳng \[\left( {ABCD} \right)\] và SO=a. Khoảng cách giữa SC và AB bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp giải:
- Sử dụng định lí: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường thẳng này tới mặt phẳng song song và chứa đường thẳng kia.
- Đổi tính khoảng cách từ chân đường vuông góc với mặt phẳng, sử dụng công thức .
- Dựng khoảng cách, sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.
Giải chi tiết:
Ta có
Mà \[ \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = 2d\left( {O;\left( {SCD} \right)} \right)\]
Gọi M là trung điểm của CD.
Vì OMlà đường trung bình của tam giác và .
Ta có: .
Trong (SOM) kẻ ta có: .
.
Áp dụng hệ thức lượng trong tam giác vuông \[SOM\] ta có: .
Vậy .
Đáp án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?
Câu 2:
Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số có 7 điểm cực trị. Tính tổng các phần tử của S.
Câu 3:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số có tập xác định là \[\mathbb{R}\].
Câu 4:
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.
Câu 6:
Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 2a. góc giữa cạnh bên và mặt đáy bằng Tính thể tích của khối nón có đỉnh là S và đáy là đường tròn ngoại tiếp
Câu 7:
Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số trên đoạn [1;3].
về câu hỏi!