Câu hỏi:
23/04/2022 722Cho mặt cầu S(O;r). mặt phẳng (P) cách tâm O một khoảng bằng cắt mặt cầu \[\left( S \right)\] theo giao tuyến là một đường tròn. Hãy tính theo r chu vi của đường tròn là giao tuyến của mặt phẳng (P) và mặt cầu (S).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp giải:
Cho mặt cầu (S) có tâm I và bán kính R
Khi đó, mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính \[r = \sqrt {{R^2} - {d^2}\left( {I;{\mkern 1mu} \left( P \right)} \right)} .\]
Chu vi của đường tròn bán kính r là:
Giải chi tiết:
Theo đề bài ta có:
Khi đó bán kính đường tròn giao tuyến của mặt phẳng (P) và mặt cầu (S) là:
⇒ Chu vi đường tròn giao tuyến của mặt phẳng (P) và mặt cầu (S) là:
Đáp án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?
Câu 2:
Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số có 7 điểm cực trị. Tính tổng các phần tử của S.
Câu 3:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số có tập xác định là \[\mathbb{R}\].
Câu 4:
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.
Câu 6:
Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 2a. góc giữa cạnh bên và mặt đáy bằng Tính thể tích của khối nón có đỉnh là S và đáy là đường tròn ngoại tiếp
Câu 7:
Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số trên đoạn [1;3].
về câu hỏi!