Câu hỏi:

23/04/2022 178

Cho tứ diện đều ABCD M là trung điểm của BC. Khi đó cos của góc giữa hai đường thẳng nào sau đây có giá trị bằng 36.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Sử dụng định lí Cô-sin trong tam giác.

Giải chi tiết:

 (TH): Cho tứ diện đều M là trung điểm của Khi đó cos của góc giữa hai đường thẳng nào sau đây có giá trị bằng  (ảnh 4)

Ta có cosα=36α>600.

Xét đáp án A: (AB;AM)=BAM.

ΔABC đều nên AM là phân giác của BACBAM=300.

Do đó loại đáp án A.

Xét đáp án B và C: Giả sử ABCD là tứ diện đều cạnh 1.

Xét tam giác AMD có AM=DM=32.

Áp dụng định lí Cô-sin trong tam giác AMD có:

cosAMD=AM2+MD2AD22AM.MD=34+3412.34=13

cos(AM;DM)=13⇒ Loại đáp án B.

\[\cos \angle ADM = \frac{{A{D^2} + M{D^2} - A{M^2}}}{{2AD.MD}}\] =1+34342.1.32=33cos(AD;DM)=33⇒ Loại đáp án B.

Xét đáp án D: Gọi N là trung điểm của AC.

Ta có MN//AB(AB;DM)=(MN;DM).

Ta có MN=12AB=12;DM=32;DM=32.

Áp dụng định lí Cô-sin trong tam giác DMNcó:

cosDMN=DM2+MN2DN22DM.MN

=34+14342.32.12=36cos(AB;DM)=36(thỏa mãn).

Đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên m[2021;2021] để hàm số g(x)=f(x+m) nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?

 (VD): Cho hàm số có đạo hàm liên tục trên . Biết hàm số có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng . Hỏi có bao nhiêu phần tử? (ảnh 8)

Xem đáp án » 23/04/2022 7,217

Câu 2:

Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số y=|3x48x36x2+24xm|có 7 điểm cực trị. Tính tổng các phần tử của S.

Xem đáp án » 23/04/2022 4,150

Câu 3:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=1log3(x22x+3m)có tập xác định là \[\mathbb{R}\].

Xem đáp án » 23/04/2022 2,828

Câu 4:

Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số y=x33x2 tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.

Xem đáp án » 23/04/2022 2,652

Câu 5:

Có bao nhiêu cách sắp xếp 8 học sinh thành một hàng dọc?

Xem đáp án » 05/04/2022 2,462

Câu 6:

Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số g(x)=f(4xx2)+13x33x2+8x53trên đoạn [1;3].

 (VDC): Cho hàm số có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số trên đoạn . (ảnh 4)

Xem đáp án » 23/04/2022 1,549

Câu 7:

Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 2a. góc giữa cạnh bên và mặt đáy bằng 600.Tính thể tích của khối nón có đỉnh là S và đáy là đường tròn ngoại tiếp ΔABC.

Xem đáp án » 23/04/2022 1,498

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store