Câu hỏi:

23/04/2022 293

Cho tứ diện đều ABCD M là trung điểm của BC. Khi đó cos của góc giữa hai đường thẳng nào sau đây có giá trị bằng 36.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Sử dụng định lí Cô-sin trong tam giác.

Giải chi tiết:

 (TH): Cho tứ diện đều M là trung điểm của Khi đó cos của góc giữa hai đường thẳng nào sau đây có giá trị bằng  (ảnh 4)

Ta có cosα=36α>600.

Xét đáp án A: (AB;AM)=BAM.

ΔABC đều nên AM là phân giác của BACBAM=300.

Do đó loại đáp án A.

Xét đáp án B và C: Giả sử ABCD là tứ diện đều cạnh 1.

Xét tam giác AMD có AM=DM=32.

Áp dụng định lí Cô-sin trong tam giác AMD có:

cosAMD=AM2+MD2AD22AM.MD=34+3412.34=13

cos(AM;DM)=13⇒ Loại đáp án B.

\[\cos \angle ADM = \frac{{A{D^2} + M{D^2} - A{M^2}}}{{2AD.MD}}\] =1+34342.1.32=33cos(AD;DM)=33⇒ Loại đáp án B.

Xét đáp án D: Gọi N là trung điểm của AC.

Ta có MN//AB(AB;DM)=(MN;DM).

Ta có MN=12AB=12;DM=32;DM=32.

Áp dụng định lí Cô-sin trong tam giác DMNcó:

cosDMN=DM2+MN2DN22DM.MN

=34+14342.32.12=36cos(AB;DM)=36(thỏa mãn).

Đáp án A.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

- Tính g'(x).

- Giải phương trình \[g'\left( x \right) = 0\], xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).

- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.

- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.

Giải chi tiết:

Ta có: g(x)=f(x+m)g'(x)=f'(x+m).

Cho g'(x)=0f'(x+m)=0[x+m=1x+m=1x+m=3[x=1mx=1mx=3m.

Ta có \[g'\left( x \right) >0 \Leftrightarrow f'\left( {x + m} \right) >0\] \[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 < x + m < 1}\\{x + m >3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 - m < x < 1 - m}\\{x >3 - m}\end{array}} \right.\].</></>

BXD g'(x):

 (VD): Cho hàm số có đạo hàm liên tục trên . Biết hàm số có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng . Hỏi có bao nhiêu phần tử? (ảnh 18)

Để hàm số g(x) nghịch biến trên (1;2) thì [21m1m1<23m[m30m1.

Kết hợp điều kiện m[2021;2021],mm[2021;3][0;1],m.

Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp S có 2021 phần tử.

Đáp án C.

Lời giải

Phương pháp giải:

Sử dụng hoán vị.

Giải chi tiết:

Số cách sắp xếp 8 học sinh thành một hàng dọc là \[8!\] cách.

Đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay