Câu hỏi:
23/04/2022 1,150Trên giá sách có 6 quyển sách Toán khác nhau, 7 quyển sách Văn khác nhau và 8 quyển sách Tiếng Anh khác nhau. Có bao nhiêu cách lấy 2 quyển sách thuộc 2 môn khác nhau?
Quảng cáo
Trả lời:
Phương pháp giải:
Xét các TH:
+ lấy 1 quyển sách Toán và 1 quyển sách Văn
+ lấy 1 quyển sách Toán và 1 quyển sách Tiếng Anh
+ lấy 1 quyển sách Văn và 1 quyển sách Văn
Sử dụng chỉnh hợp và quy tắc cộng.
Giải chi tiết:
Số cách lấy 1 quyển sách Toán và 1 quyển sách Văn là 6.7=42 cách.
Số cách lấy 1 quyển sách Toán và 1 quyển sách Tiếng Anh là 6.8=48 cách.
Số cách lấy 1 quyển sách Văn và 1 quyển sách Văn là 7.8=56 cách.
Vậy số cách lấy 2 quyển sách thuộc 2 môn khác nhau là: 42+48+56+146 cách.
Đáp án D.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
- Tính g'(x).
- Giải phương trình \[g'\left( x \right) = 0\], xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).
- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.
- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.
Giải chi tiết:
Ta có: .
Cho .
Ta có \[g'\left( x \right) >0 \Leftrightarrow f'\left( {x + m} \right) >0\] \[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 < x + m < 1}\\{x + m >3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 - m < x < 1 - m}\\{x >3 - m}\end{array}} \right.\].</></>
BXD g'(x):
Để hàm số g(x) nghịch biến trên (1;2) thì .
Kết hợp điều kiện .
Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp S có 2021 phần tử.
Đáp án C.
Lời giải
Phương pháp giải:
Sử dụng hoán vị.
Giải chi tiết:
Số cách sắp xếp 8 học sinh thành một hàng dọc là \[8!\] cách.
Đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.