Câu hỏi:

23/04/2022 592

Hỏi có bao nhiêu giá trị m nguyên trong [2020;2020] để phương trình log(mx)=2log(x+1) có nghiệm duy nhất?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Tìm ĐKXĐ của phương trình.

- Đưa về cùng cơ số 10.

- Giải phương trình logarit: logaf(x)=logag(x)f(x)=g(x)>0.

- Cô lập m, đưa phương trình về dạng m=f(x).

- Lập BBT của hàm số f(x), từ BBT tìm điều kiện của m để phương trình vô nghiệm.

Giải chi tiết:

ĐKXĐ: \[\left\{ {\begin{array}{*{20}{l}}{mx >0}\\{x + 1 >0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{mx >0}\\{x >- 1}\end{array}} \right.\].

Ta có: log(mx)=2log(x+1)log(mx)=log(x+1)2mx=(x+1)2(*).

Do x>1x+1>0(x+1)2>0mx>0. Do đó x0.

Khi đó ta có (*)m=(x+1)2x=f(x), với x>1;x0.

Ta có:

f'(x)=2(x+1).x(x+1)2x2

f'(x)=2x2+2xx22x1x2

f'(x)=x21x2=0[x=1x=1

BBT:

 (VD): Hỏi có bao nhiêu giá trị m nguyên trong để phương trình có nghiệm duy nhất?  (ảnh 15)

Dựa vào BBT ta thấy phương (*) có nghiệm duy nhất [m<0m=4.

Kết hợp điều kiện \[m \in \mathbb{Z},{\mkern 1mu} {\mkern 1mu} m \in \left[ { - 2020;2020} \right]\] ta có m,m[2020;2020].

Vậy có 2021 giá trị của m thỏa mãn yêu cầu bài toán.

Đáp án D.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên m[2021;2021] để hàm số g(x)=f(x+m) nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?

 (VD): Cho hàm số có đạo hàm liên tục trên . Biết hàm số có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng . Hỏi có bao nhiêu phần tử? (ảnh 8)

Xem đáp án » 23/04/2022 7,812

Câu 2:

Có bao nhiêu cách sắp xếp 8 học sinh thành một hàng dọc?

Xem đáp án » 05/04/2022 5,848

Câu 3:

Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số y=|3x48x36x2+24xm|có 7 điểm cực trị. Tính tổng các phần tử của S.

Xem đáp án » 23/04/2022 4,953

Câu 4:

Tìm tập hợp tất cả các giá trị của tham số m để hàm số y=1log3(x22x+3m)có tập xác định là \[\mathbb{R}\].

Xem đáp án » 23/04/2022 4,033

Câu 5:

Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số y=x33x2 tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.

Xem đáp án » 23/04/2022 3,111

Câu 6:

Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số g(x)=f(4xx2)+13x33x2+8x53trên đoạn [1;3].

 (VDC): Cho hàm số có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số trên đoạn . (ảnh 4)

Xem đáp án » 23/04/2022 2,234

Câu 7:

Cho giới hạn limx4x2+3x4x2+4x=ab, với \[\frac{a}{b}\] là phân số tối giản. Tính giá trị của biểu thức a2b2.

Xem đáp án » 23/04/2022 1,734
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay