Câu hỏi:
23/04/2022 341Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình vuông A'B'C'D' và M là điểm thuộc đoạn thẳng OI sao cho MO=2MI. Khi đó côsin của góc tạo bởi hai mặt phẳng (MC'D') và (MAB) bằng:
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 70k).
Quảng cáo
Trả lời:
Phương pháp giải:
- Sử dụng định lí: Góc giữa hai mặt phẳng là giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.
- Xác định góc giữa hai mặt phẳng, sử dụng định lí Pytago và định lí Côsin trong tam giác để tính góc.
Giải chi tiết:
Gọi E,F lần lượt là trung điểm của C'D',AB.
Xét và có MI chung, Ic'=Id' nên (2 cạnh góc vuông)
cân tại E .
Chứng minh tương tự ta có .
Xét (MC'D') và (MAB) có M chung,
.
Lại có .
Ta có: \[\left\{ {\begin{array}{*{20}{l}}{\left( {MC'D'} \right) \cap \left( {MAB} \right) = Mx}\\{ME \subset \left( {MC'D'} \right),{\mkern 1mu} {\mkern 1mu} ME \bot Mx}\\{MF \subset \left( {MAB} \right),{\mkern 1mu} {\mkern 1mu} MF \bot Mx}\end{array}} \right.\]
.
Giả sử ABCD.A'B'C'D' là khối lập phương có cạnh bằng 1.
Ta có .
Áp dụng định lí Pytago ta có:
Tương tự ta có
Dễ thấy BC'EF là hình bình hành nên .
Áp dụng định lí Côsin trong tam giác MEF ta có:
Mà góc giữa hai mặt phẳng là góc nhọn, có giá trị côsin là số dương.
Vậy .
Đáp án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?
Câu 2:
Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số có 7 điểm cực trị. Tính tổng các phần tử của S.
Câu 3:
Tìm tập hợp tất cả các giá trị của tham số m để hàm số có tập xác định là \[\mathbb{R}\].
Câu 5:
Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số tại ba điểm phân biệt A,B,C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.
Câu 6:
Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số trên đoạn [1;3].
Câu 7:
Cho giới hạn , với \[\frac{a}{b}\] là phân số tối giản. Tính giá trị của biểu thức .
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
50 bài tập Nguyên hàm, tích phân và ứng dụng có lời giải
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 2)
CÂU TRẮC NGHIỆM ĐÚNG SAI
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 3)
Đề minh họa THPT Quốc gia môn Toán năm 2023 có đáp án
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 5)
về câu hỏi!