Câu hỏi:

23/04/2022 501

Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình vuông A'B'C'D' và M là điểm thuộc đoạn thẳng OI sao cho MO=2MI. Khi đó côsin của góc tạo bởi hai mặt phẳng (MC'D') và (MAB) bằng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

- Sử dụng định lí: Góc giữa hai mặt phẳng là giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.

- Xác định góc giữa hai mặt phẳng, sử dụng định lí Pytago và định lí Côsin trong tam giác để tính góc.

Giải chi tiết:

 (VD): Cho hình lập phương có tâm O. Gọi I là tâm hình vuông và M là điểm thuộc đoạn thẳng sao cho . Khi đó côsin của góc tạo bởi hai mặt phẳng và bằng:  (ảnh 7)

Gọi E,F lần lượt là trung điểm của C'D',AB.

Xét ΔMIC'ΔMID' có MI chung, Ic'=Id' nên ΔMIC'=ΔMID'(2 cạnh góc vuông)

MC'=MD'ΔMC'D'cân tại E MEC'D'.

Chứng minh tương tự ta có MFAB.

Xét (MC'D') và (MAB) có M chung, {C'D'(MC'D')AB(MAB)C'D'//AB

(MC'D')(MAB)=Mx//C'D'//AB.

Lại có {MEC'D'MFAB(cmt){MEMxMFMx.

Ta có: \[\left\{ {\begin{array}{*{20}{l}}{\left( {MC'D'} \right) \cap \left( {MAB} \right) = Mx}\\{ME \subset \left( {MC'D'} \right),{\mkern 1mu} {\mkern 1mu} ME \bot Mx}\\{MF \subset \left( {MAB} \right),{\mkern 1mu} {\mkern 1mu} MF \bot Mx}\end{array}} \right.\]

((MC'D');(MAB))=(ME;MF).

Giả sử ABCD.A'B'C'D' là khối lập phương có cạnh bằng 1.

Ta có MO=2MIMI=13OI=16.

Áp dụng định lí Pytago ta có: MC'=MI2+IC'2=(16)2+(22)2=196

ME=MC'2EC'2=(196)2(12)2=106

Tương tự ta có MB=MJ2+JB2=(56)2+(22)2=436

MF=MB2BF2=346

Dễ thấy BC'EF là hình bình hành nên EF=BC'=2.

Áp dụng định lí Côsin trong tam giác MEF ta có:

cosEMF=ME2+MF2EF22ME.MF=(106)2+(346)2(2)22.106.346=78585

Mà góc giữa hai mặt phẳng là góc nhọn, có giá trị côsin là số dương.

Vậy cos((MC'D');(MAB))=78585.

Đáp án C.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp giải:

- Tính g'(x).

- Giải phương trình \[g'\left( x \right) = 0\], xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).

- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.

- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.

Giải chi tiết:

Ta có: g(x)=f(x+m)g'(x)=f'(x+m).

Cho g'(x)=0f'(x+m)=0[x+m=1x+m=1x+m=3[x=1mx=1mx=3m.

Ta có \[g'\left( x \right) >0 \Leftrightarrow f'\left( {x + m} \right) >0\] \[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 < x + m < 1}\\{x + m >3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 - m < x < 1 - m}\\{x >3 - m}\end{array}} \right.\].</></>

BXD g'(x):

 (VD): Cho hàm số có đạo hàm liên tục trên . Biết hàm số có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng . Hỏi có bao nhiêu phần tử? (ảnh 18)

Để hàm số g(x) nghịch biến trên (1;2) thì [21m1m1<23m[m30m1.

Kết hợp điều kiện m[2021;2021],mm[2021;3][0;1],m.

Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp S có 2021 phần tử.

Đáp án C.

Lời giải

Phương pháp giải:

Sử dụng hoán vị.

Giải chi tiết:

Số cách sắp xếp 8 học sinh thành một hàng dọc là \[8!\] cách.

Đáp án D.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay