Câu hỏi:
23/04/2022 315Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi M,N lần lượt là trung điểm của các cạnh AB,A'C'. P là điểm trên cạnh BB' sao cho PB=2PB'. Thể tích của khối tứ diện OMNP bằng:
Quảng cáo
Trả lời:
Phương pháp giải:
- Không mất tính tổng quát, ta giả sử ABC.A'B'C' là lăng trụ đứng để bài toán đơn giản hơn.
- Trong kéo dài NC cắt AA' tại E. Sử dụng tỉ số thể tích Simpson tính .
- Tính , sử dụng phương pháp phần bù để so sánh với \[{S_{ABB'A'}}\]
- Sử dụng nhận xét , từ đó tính theo V.
Giải chi tiết:
Không mất tính tổng quát, ta giả sử ABC.A'B'C' là lăng trụ đứng để bài toán đơn giản hơn.
Trong (ACC'A') kéo dài NC cắt AA' tại E.
Áp dụng định lí Ta-lét ta có là trung điểm của của CE.
Ta có: .
Dựng hình chữ nhật ABFE, ta có:
;
\[\frac{{{S_{EAM}}}}{{{S_{ABFE}}}} = \frac{1}{2}.\frac{{AM}}{{AB}} = \frac{1}{4}\]; ; .
Khi đó ta có:
Ta có: . Mà nên .
Vậy .
Đáp án C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
- Tính g'(x).
- Giải phương trình \[g'\left( x \right) = 0\], xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).
- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.
- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.
Giải chi tiết:
Ta có: .
Cho .
Ta có \[g'\left( x \right) >0 \Leftrightarrow f'\left( {x + m} \right) >0\] \[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 < x + m < 1}\\{x + m >3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 - m < x < 1 - m}\\{x >3 - m}\end{array}} \right.\].</></>
BXD g'(x):
Để hàm số g(x) nghịch biến trên (1;2) thì .
Kết hợp điều kiện .
Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp S có 2021 phần tử.
Đáp án C.
Lời giải
Phương pháp giải:
Sử dụng hoán vị.
Giải chi tiết:
Số cách sắp xếp 8 học sinh thành một hàng dọc là \[8!\] cách.
Đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
30 Đề thi thử thpt quốc gia môn Toán có lời giải chi tiết mới nhất (Đề số 1)
CÂU TRẮC NGHIỆM ĐÚNG SAI
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 1)
(2025 mới) Đề thi ôn tập THPT môn Toán có đáp án (Đề số 1)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 2)
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 19)
45 bài tập Xác suất có lời giải
Đề minh họa tốt nghiệp THPT môn Toán có đáp án năm 2025 (Đề 11)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận