Câu hỏi:
23/04/2022 330Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi M,N lần lượt là trung điểm của các cạnh AB,A'C'. P là điểm trên cạnh BB' sao cho PB=2PB'. Thể tích của khối tứ diện OMNP bằng:
Quảng cáo
Trả lời:
Phương pháp giải:
- Không mất tính tổng quát, ta giả sử ABC.A'B'C' là lăng trụ đứng để bài toán đơn giản hơn.
- Trong kéo dài NC cắt AA' tại E. Sử dụng tỉ số thể tích Simpson tính .
- Tính , sử dụng phương pháp phần bù để so sánh với \[{S_{ABB'A'}}\]
- Sử dụng nhận xét , từ đó tính theo V.
Giải chi tiết:
Không mất tính tổng quát, ta giả sử ABC.A'B'C' là lăng trụ đứng để bài toán đơn giản hơn.
Trong (ACC'A') kéo dài NC cắt AA' tại E.
Áp dụng định lí Ta-lét ta có là trung điểm của của CE.
Ta có: .
Dựng hình chữ nhật ABFE, ta có:
;
\[\frac{{{S_{EAM}}}}{{{S_{ABFE}}}} = \frac{1}{2}.\frac{{AM}}{{AB}} = \frac{1}{4}\]; ; .
Khi đó ta có:
Ta có: . Mà nên .
Vậy .
Đáp án C.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp giải:
- Tính g'(x).
- Giải phương trình \[g'\left( x \right) = 0\], xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).
- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.
- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.
Giải chi tiết:
Ta có: .
Cho .
Ta có \[g'\left( x \right) >0 \Leftrightarrow f'\left( {x + m} \right) >0\] \[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 < x + m < 1}\\{x + m >3}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{ - 1 - m < x < 1 - m}\\{x >3 - m}\end{array}} \right.\].</></>
BXD g'(x):
Để hàm số g(x) nghịch biến trên (1;2) thì .
Kết hợp điều kiện .
Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp S có 2021 phần tử.
Đáp án C.
Lời giải
Phương pháp giải:
Sử dụng hoán vị.
Giải chi tiết:
Số cách sắp xếp 8 học sinh thành một hàng dọc là \[8!\] cách.
Đáp án D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.